No Arabic abstract
We extend the positivity-preserving method of Zhang & Shu (2010, JCP, 229, 3091-3120) to simulate the advection of neutral particles in phase space using curvilinear coordinates. The ability to utilize these coordinates is important for non-equilibrium transport problems in general relativity and also in science and engineering applications with specific geometries. The method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of phase space and strong stability-preserving, Runge-Kutta (SSP-RK) time integration. Special care in taken to ensure that the method preserves strict bounds for the phase space distribution function $f$; i.e., $fin[0,1]$. The combination of suitable CFL conditions and the use of the high-order limiter proposed in Zhang & Shu (2010) is sufficient to ensure positivity of the distribution function. However, to ensure that the distribution function satisfies the upper bound, the discretization must, in addition, preserve the divergence-free property of the phase space flow. Proofs that highlight the necessary conditions are presented for general curvilinear coordinates, and the details of these conditions are worked out for some commonly used coordinate systems (i.e., spherical polar spatial coordinates in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with spherical momentum coordinates). Results from numerical experiments --- including one example in spherical symmetry adopting the Schwarzschild metric --- demonstrate that the method achieves high-order accuracy and that the distribution function satisfies the maximum principle.
A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks and other discontinuities. This paper investigates discontinuous Galerkin methods for the solution of elliptic problems in numerical relativity. We present a novel hp-adaptive numerical scheme for curvilinear and non-conforming meshes. It uses a multigrid preconditioner with a Chebyshev or Schwarz smoother to create a very scalable discontinuous Galerkin code on generic domains. The code employs compactification to move the outer boundary near spatial infinity. We explore the properties of the code on some test problems, including one mimicking Neutron stars with phase transitions. We also apply it to construct initial data for two or three black holes.
This paper presents a class of novel high-order accurate discontinuous Galerkin (DG) schemes for the compressible Euler equations under gravitational fields. A notable feature of these schemes is that they are well-balanced for a general hydrostatic equilibrium state, and at the same time, provably preserve the positivity of density and pressure. In order to achieve the well-balanced and positivity-preserving properties simultaneously, a novel DG spatial discretization is carefully designed with suitable source term reformulation and a properly modified Harten-Lax-van Leer contact (HLLC) flux. Based on some technical decompositions as well as several key properties of the admissible states and HLLC flux, rigorous positivity-preserving analyses are carried out. It is proven that the resulting well-balanced DG schemes, coupled with strong stability preserving time discretizations, satisfy a weak positivity property, which implies that one can apply a simple existing limiter to effectively enforce the positivity-preserving property, without losing high-order accuracy and conservation. The proposed methods and analyses are applicable to the Euler system with general equation of state. Extensive one- and two-dimensional numerical tests demonstrate the desired properties of these schemes, including the exact preservation of the equilibrium state, the ability to capture small perturbation of such state, the robustness for solving problems involving low density and/or low pressure, and good resolution for smooth and discontinuous solutions.
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.
In this paper, a high order quasi-conservative discontinuous Galerkin (DG) method using the non-oscillatory kinetic flux is proposed for the 5-equation model of compressible multi-component flows with Mie-Gruneisen equation of state. The method mainly consists of three steps: firstly, the DG method with the non-oscillatory kinetic flux is used to solve the conservative equations of the model; secondly, inspired by Abgralls idea, we derive a DG scheme for the volume fraction equation which can avoid the unphysical oscillations near the material interfaces; finally, a multi-resolution WENO limiter and a maximum-principle-satisfying limiter are employed to ensure oscillation-free near the discontinuities, and preserve the physical bounds for the volume fraction, respectively. Numerical tests show that the method can achieve high order for smooth solutions and keep non-oscillatory at discontinuities. Moreover, the velocity and pressure are oscillation-free at the interface and the volume fraction can stay in the interval [0,1].
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stability enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $Delta t=mathcal{O}(h)$ where $Delta t$ and $h$ are the time step and mesh size respectively, instead of parabolic $Delta t=mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.