No Arabic abstract
This paper presents a class of novel high-order accurate discontinuous Galerkin (DG) schemes for the compressible Euler equations under gravitational fields. A notable feature of these schemes is that they are well-balanced for a general hydrostatic equilibrium state, and at the same time, provably preserve the positivity of density and pressure. In order to achieve the well-balanced and positivity-preserving properties simultaneously, a novel DG spatial discretization is carefully designed with suitable source term reformulation and a properly modified Harten-Lax-van Leer contact (HLLC) flux. Based on some technical decompositions as well as several key properties of the admissible states and HLLC flux, rigorous positivity-preserving analyses are carried out. It is proven that the resulting well-balanced DG schemes, coupled with strong stability preserving time discretizations, satisfy a weak positivity property, which implies that one can apply a simple existing limiter to effectively enforce the positivity-preserving property, without losing high-order accuracy and conservation. The proposed methods and analyses are applicable to the Euler system with general equation of state. Extensive one- and two-dimensional numerical tests demonstrate the desired properties of these schemes, including the exact preservation of the equilibrium state, the ability to capture small perturbation of such state, the robustness for solving problems involving low density and/or low pressure, and good resolution for smooth and discontinuous solutions.
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stability enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $Delta t=mathcal{O}(h)$ where $Delta t$ and $h$ are the time step and mesh size respectively, instead of parabolic $Delta t=mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.
In this paper, we present and study discontinuous Galerkin (DG) methods for one-dimensional multi-symplectic Hamiltonian partial differential equations. We particularly focus on semi-discrete schemes with spatial discretization only, and show that the proposed DG methods can simultaneously preserve the multi-symplectic structure and energy conservation with a general class of numerical fluxes, which includes the well-known central and alternating fluxes. Applications to the wave equation, the Benjamin-Bona-Mahony equation, the Camassa-Holm equation, the Korteweg-de Vries equation and the nonlinear Schrodinger equation are discussed. Some numerical results are provided to demonstrate the accuracy and long time behavior of the proposed methods. Numerically, we observe that certain choices of numerical fluxes in the discussed class may help achieve better accuracy compared with the commonly used ones including the central fluxes.
Finite element simulations have been used to solve various partial differential equations (PDEs) that model physical, chemical, and biological phenomena. The resulting discretized solutions to PDEs often do not satisfy requisite physical properties, such as positivity or monotonicity. Such invalid solutions pose both modeling challenges, since the physical interpretation of simulation results is not possible, and computational challenges, since such properties may be required to advance the scheme. We, therefore, consider the problem of computing solutions that preserve these structural solution properties, which we enforce as additional constraints on the solution. We consider in particular the class of convex constraints, which includes positivity and monotonicity. By embedding such constraints as a postprocessing convex optimization procedure, we can compute solutions that satisfy general types of convex constraints. For certain types of constraints (including positivity and monotonicity), the optimization is a filter, i.e., a norm-decreasing operation. We provide a variety of tests on one-dimensional time-dependent PDEs that demonstrate the methods efficacy, and we empirically show that rates of convergence are unaffected by the inclusion of the constraints.
This paper investigates the use of $ell^1$ regularization for solving hyperbolic conservation laws based on high order discontinuous Galerkin (DG) approximations. We first use the polynomial annihilation method to construct a high order edge sensor which enables us to flag troubled elements. The DG approximation is enhanced in these troubled regions by activating $ell^1$ regularization to promote sparsity in the corresponding jump function of the numerical solution. The resulting $ell^1$ optimization problem is efficiently implemented using the alternating direction method of multipliers. By enacting $ell^1$ regularization only in troubled cells, our method remains accurate and efficient, as no additional regularization or expensive iterative procedures are needed in smooth regions. We present results for the inviscid Burgers equation as well as a nonlinear system of conservation laws using a nodal collocation-type DG method as a solver.
We design, analyze and numerically validate a novel discontinuous Galerkin method for solving the coagulation-fragmentation equations. The DG discretization is applied to the conservative form of the model, with flux terms evaluated by Gaussian quadrature with $Q=k+1$ quadrature points for polynomials of degree $k$. The positivity of the numerical solution is enforced through a simple scaling limiter based on positive cell averages. The positivity of cell averages is propagated by the time discretization provided a proper time step restriction is imposed.