No Arabic abstract
We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap. A transcendental equation is derived giving access to the energy spectrum and revealing the dependence of the energy gaps on the anisotropy parameter. The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established. The contact, capturing the two-body short range correlations, shows an increasing tendency for a larger anisotropy. Subsequently, the interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies. A closed analytical form of the expansion coefficients of the two-body wavefunction, during the time evolution is constructed. The response of the system is studied by means of the time-averaged fidelity, the spectra of the spatial extent of the cloud in each direction and the one-body density. It is found that as the anisotropy increases, the system becomes less perturbed independently of the interactions while for fixed anisotropy quenches towards the non-interacting regime perturb the system in the most efficient manner. Furthermore, we identify that in the tightly confined direction more frequencies are involved in the dynamics stemming from higher-lying excited states.
We study ultra-cold bosons out of equilibrium in a one-dimensional (1D) setting and probe the breaking of integrability and the resulting relaxation at the onset of the crossover from one to three dimensions. In a quantum Newtons cradle type experiment, we excite the atoms to oscillate and collide in an array of 1D tubes and observe the evolution for up to 4.8 seconds (400 oscillations) with minimal heating and loss. By investigating the dynamics of the longitudinal momentum distribution function and the transverse excitation, we observe and quantify a two-stage relaxation process. In the initial stage single-body dephasing reduces the 1D densities, thus rapidly drives the 1D gas out of the quantum degenerate regime. The momentum distribution function asymptotically approaches the distribution of quasimomenta (rapidities), which are conserved in an integrable system. In the subsequent long time evolution, the 1D gas slowly relaxes towards thermal equilibrium through the collisions with transversely excited atoms. Moreover, we tune the dynamics in the dimensional crossover by initializing the evolution with different imprinted longitudinal momenta (energies). The dynamical evolution towards the relaxed state is quantitatively described by a semiclassical molecular dynamics simulation.
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (rf) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak repulsive or attractive impurity-medium interactions, a multitude of polaronic excitations or mode-couplings of the impurity-bath interaction with the collective breathing motion of the bosonic medium are spectrally resolved. We find that for strongly repulsive impurity-bath interactions, a temporal orthogonality catastrophe manifests in resonances in the excitation spectra where impurity coherence vanishes. When two impurities are introduced, impurity-impurity correlations, for either attractive or strong repulsive couplings, induce a spectral shift of the resonances with respect to the single impurity. For a heavy impurity, the polaronic peak is accompanied by a series of equidistant side-band resonances, related to interference of the impurity spin dynamics and the sound waves of the bath. In all cases, we enter the diabatic transfer regime for an increasing bare Rabi frequency of the rf field with a Lorentzian spectral shape featuring a single polaronic resonance. The findings in this work on the effects of external trap, rf pulse and impurity-impurity interaction should have implications for the new generations of cold-atom experiments.
We study a system of two bosons of one species and a third boson of a second species in a one-dimensional parabolic trap at zero temperature. We assume contact repulsive inter- and intra-species interactions. By means of an exact diagonalization method we calculate the ground and excited states for the whole range of interactions. We use discrete group theory to classify the eigenstates according to the symmetry of the interaction potential. We also propose and validate analytical ansatzs gaining physical insight over the numerically obtained wavefunctions. We show that, for both approaches, it is crucial to take into account that the distinguishability of the third atom implies the absence of any restriction over the wavefunction when interchanging this boson with any of the other two. We find that there are degeneracies in the spectra in some limiting regimes, that is, when the inter-species and/or the intra-species interactions tend to infinity. This is in contrast with the three-identical boson system, where no degeneracy occurs in these limits. We show that, when tuning both types of interactions through a protocol that keeps them equal while they are increased towards infinity, the systemss ground state resembles that of three indistinguishable bosons. Contrarily, the systemss ground state is different from that of three-identical bosons when both types of interactions are increased towards infinity through protocols that do not restrict them to be equal. We study the coherence and correlations of the system as the interactions are tuned through different protocols, which permit to built up different correlations in the system and lead to different spatial distributions of the three atoms.
We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon quenching arbitrarily their interaction strength thereby covering the entire energy spectrum. Utilizing the exact analytical solution of the stationary system we derive a closed analytical form of the expansion coefficients of the time-evolved two-body wavefunction, whose dynamics is determined by an expansion over the postquench eigenstates. The emergent dynamical response of the system is analyzed in detail by inspecting several observables such as the fidelity, the reduced one-body densities, the radial probability density of the relative wavefunction in both real and momentum space as well as the Tan contact unveiling the existence of short range two-body correlations. It is found that when the system is initialized in its bound state it is perturbed in the most efficient manner compared to any other initial configuration. Moreover, starting from an interacting ground state the two-boson response is enhanced for quenches towards the non-interacting limit.
We derive an integral equation describing $N$ two-dimensional bosons with zero-range interactions and solve it for the ground state energy $B_N$ by applying a stochastic diffusion Monte Carlo scheme for up to 26 particles. We confirm and go beyond the scaling $B_Npropto 8.567^N$ predicted by Hammer and Son [Phys. Rev. Lett. {bf 93}, 250408 (2004)] in the large-$N$ limit.