Do you want to publish a course? Click here

On the diameter dependence of metal-nanowire Schottky barrier height

109   0   0.0 ( 0 )
 Added by Yonatan Calahorra
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bardeens model for the non-ideal metal-semiconductor interface was applied to metal-wrapped cylindrical nanowire systems; a significant effect of the nanowire diameter on the non-ideal Schottky barrier height was found. The calculations were performed by solving Poissons equation in the nanowire, self-consistently with the constraints set by the non-ideal interface conditions; in these calculations the barrier height is obtained from the solution, and it is not a boundary condition for Poissons equation. The main finding is that thin nanowires are expected to have tens of meV higher Schottky barriers compared to their thicker counterparts. What lies behind this effect is the electrostatic properties of metal-wrapped nanowires; in particular, since depletion charge is reduced with nanowire radius, the potential drop on the interfacial layer, is reduced - leading to the increase of the barrier height with nanowire radius reduction.



rate research

Read More

We show the operation of a Cu/Al_2O_3/Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 $pm$ 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ~2 * 10^-13 A, an ON/OFF ratio of ~10^5 and an equivalent subtreshold swing of ~96 mV/dec at low temperatures, which are suitable values for potential high frequency devices.
The authors report on the crystallographic orientation dependence of the Schottky properties for heterojunctions between a half-metallic ferromagnet La$_0.6$Sr$_0.4$MnO$_3$ (LSMO) and Nb-doped SrTiO3 semiconductor. The Schottky barrier height determined by in situ photoemission measurements is independent for the substrate orientations (001) and (110), while the magnetic properties of LSMO (110) films are more enhanced than for (001) films. These results suggest that the performance of magnetic devices based on ferromagnetic manganite is improved by using (110)-oriented substrates.
The observed performances of carbon nanotube field effect transistors are examined using first-principles quantum transport calculations. We focus on the nature and role of the electrical contact of Au and Pd electrodes to open-ended semiconducting nanotubes, allowing the chemical contact at the surface to fully develop through large-scale relaxation of the contacting atomic configuration. We present the first direct numerical evidence of Pd contacts exhibiting perfect transparency for hole injection as opposed to that of Au contacts. Their respective Schottky barrier heights, on the other hand, turn out to be fairly similar for realistic contact models. These findings are in general agreement with experimental data reported to date, and show that a Schottky contact is not merely a passive ohmic contact but actively influences the device I-V behavior.
241 - Runlai Wan , Xi Cao , Jing Guo 2014
Schottky barrier field-effect transistors (SBFETs) based on few and mono layer phosphorene are simulated by the non-equilibrium Greens function formalism. It is shown that scaling down the gate oxide thickness results in pronounced ambipolar I-V characteristics and significant increase of the minimal leakage current. The problem of leakage is especially severe when the gate insulator is thin and the number of layer is large, but can be effectively suppressed by reducing phosphorene to mono or bilayer. Different from two-dimensional graphene and layered dichalcogenide materials, both the ON-current of the phosphorene SBFETs and the metal-semiconductor contact resistance between metal and phosphorene strongly depend on the transport crystalline direction.
386 - Zhao Wang , N. Mingo 2011
We theoretically compute the thermal conductivity of SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. Our results account for the weaker diameter dependence of the thermal conductivity recently observed in Si$_{1-x}$Ge$_x$ nanowires ($x<0.1$), as compared to pure Si nanowires. We also present calculations in the full range of alloy concentrations, $0 leq x leq 1$, which may serve as a basis for comparison with future experiments on high alloy concentration nanowires.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا