Do you want to publish a course? Click here

The effects of non-linear electron-phonon interactions on superconductivity and charge-density-wave correlations

129   0   0.0 ( 0 )
 Added by Steven Johnston
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Determinant quantum Monte Carlo (DQMC) simulations are used to study non-linear electron-phonon interactions in a two-dimensional Holstein-like model on a square lattice. We examine the impact of non-linear electron-lattice interactions on superconductivity and on Peierls charge-density-wave (CDW) correlations at finite temperatures and carrier concentrations. We find that the CDW correlations are dramatically suppressed with the inclusion of even a small non-linear interaction. Conversely, the effect of the non-linearity on superconductivity is found to be less dramatic at high temperatures; however, we find evidence that the non-linearity is ultimately detrimental to superconductivity. These effects are attributed to the combined hardening of the phonon frequency and a renormalization of the effective linear electron-phonon coupling towards weaker values. These results demonstrate the importance of non-linear interactions at finite carrier concentrations when one is addressing CDW and superconducting order and have implications for experiments that drive the lattice far from equilibrium.



rate research

Read More

179 - J.P.Hague 2007
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I find a d-wave superconducting state that is unique close to half-filling. The order parameter undergoes a transition to s-wave superconductivity on increasing filling. I explain how the inclusion of both vertex corrections and spatial fluctuations is essential for the prediction of a d-wave order parameter. I then discuss the effects of a large Coulomb pseudopotential on the superconductivity (such as is found in contemporary superconducting materials like the cuprates), which results in the destruction of the s-wave states, while leaving the d-wave states unmodified.
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW-like transition occurs at 280 K, below which SC emerges at 0.3 K, without any extrinsic doping. The Eu ions were found to exhibit an anomalously temperature-independent mixed valence of about +2.2, associated with the formation of CDW. The mixed valence of Eu gives rise to self electron doping into the conduction bands mainly consisting of the in-plane Bi-6$p$ states, which in turn brings about the CDW and SC. In particular, the electronic specific-heat coefficient is enhanced by ~ 50 times, owing to the significant hybridizations between Eu-4$f$ and Bi-6$p$ electrons, as verified by band-structure calculations. Thus, EuBiS$_2$F manifests itself as an unprecedented material that simultaneously accommodates SC, CDW and $f$-electron valence instability.
The Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV$_3$Sb$_5$ that is found to be intimately intertwined with the anomalous Hall effect and superconductivity. High-precision electronic structure determination is essential to understand the origin of the CDW transition and its interplay with electron correlation, topology and superconductivity, yet, little evidence has been found about the impact of the CDW state on the electronic structure in AV$_3$Sb$_5$. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission (ARPES) measurements on KV$_3$Sb$_5$. We have observed CDW-induced Fermi surface reconstruction and the associated band structure folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zone. The Fermi surface- and momentum-dependent CDW gap is measured for the first time and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface sheets. In particular, we have observed signatures of the electron-phonon coupling for all the V-derived bands. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV$_3$Sb$_5$ superconductors.
Superconductivity often emerges in the proximity of, or in competition with, symmetry breaking ground states such as antiferromagnetism or charge density waves (CDW)1-5. A number of materials in the cuprate family, which includes the high-transition-temperature (high-Tc) superconductors, show spin and charge density wave order5-7. Thus a fundamental question is to what extent these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy x-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity are competing orders in this typical high-Tc superconductor, and high-Tc superconductivity can form from a pre-existing CDW state. Our results explain observations of small Fermi surface pockets8, negative Hall and Seebeck effect9,10 and the Tc plateau11 in this material when underdoped.
The recently discovered layered kagome metals AV$_3$Sb$_5$ (A = K, Rb, and Cs) with vanadium kagome networks provide a novel platform to explore correlated quantum states intertwined with topological band structures. Here we report the prominent effect of hole doping on both superconductivity and charge density wave (CDW) order, achieved by selective oxidation of exfoliated thin flakes. A superconducting dome is revealed as a function of the effective doping content. The superconducting transition temperature ($T_{mathrm{c}}$) and upper critical field in thin flakes are significantly enhanced compared with the bulk, which are accompanied by the suppression of CDW. Our detailed analyses establish the pivotal role of van Hove singularities (VHSs) in promoting correlated quantum orders in these kagome metals. Our experiment not only demonstrates the intriguing nature of superconducting and CDW orders, but also provides a novel route to tune the carrier concentration, thereby establishing AV$_3$Sb$_5$ as a tunable 2D platform for the further exploration of topology and correlation among 3$d$ electrons in kagome lattices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا