Do you want to publish a course? Click here

More Natural Models of Electoral Control by Partition

367   0   0.0 ( 0 )
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

Control studies attempts to set the outcome of elections through the addition, deletion, or partition of voters or candidates. The set of benchmark control types was largely set in the seminal 1992 paper by Bartholdi, Tovey, and Trick that introduced control, and there now is a large literature studying how many of the benchmark types various election systems are vulnerable to, i.e., have polynomial-time attack algorithms for. However, although the longstanding benchmark models of addition and deletion model relatively well the real-world settings that inspire them, the longstanding benchmark models of partition model settings that are arguably quite distant from those they seek to capture. In this paper, we introduce--and for some important cases analyze the complexity of--new partition models that seek to better capture many real-world partition settings. In particular, in many partition settings one wants the two parts of the partition to be of (almost) equal size, or is partitioning into more than two parts, or has groups of actors who must be placed in the same part of the partition. Our hope is that having these new partition types will allow studies of control attacks to include such models that more realistically capture many settings.



rate research

Read More

Previous work on voter control, which refers to situations where a chair seeks to change the outcome of an election by deleting, adding, or partitioning voters, takes for granted that the chair knows all the voters preferences and that all votes are cast simultaneously. However, elections are often held sequentially and the chair thus knows only the previously cast votes and not the future ones, yet needs to decide instantaneously which control action to take. We introduce a framework that models online voter control in sequential elections. We show that the related problems can be much harder than in the standard (non-online) case: For certain election systems, even with efficient winner problems, online control by deleting, adding, or partitioning voters is PSPACE-complete, even if there are only two candidates. In addition, we obtain (by a new characterization of coNP in terms of weight-bounded alternating Turing machines) completeness for coNP in the deleting/adding cases with a bounded deletion/addition limit, and we obtain completeness for NP in the partition cases with an additional restriction. We also show that for plurality, online control by deleting or adding voters is in P, and for partitioning voters is coNP-hard.
257 - Gabor Erdelyi , Markus Nowak , 2009
We study sincere-strategy preference-based approval voting (SP-AV), a system proposed by Brams and Sanver [Electoral Studies, 25(2):287-305, 2006], and here adjusted so as to coerce admissibility of the votes (rather than excluding inadmissible votes a priori), with respect to procedural control. In such control scenarios, an external agent seeks to change the outcome of an election via actions such as adding/deleting/partitioning either candidates or voters. SP-AV combines the voters preference rankings with their approvals of candidates, where in elections with at least two candidates the voters approval strategies are adjusted--if needed--to approve of their most-preferred candidate and to disapprove of their least-preferred candidate. This rule coerces admissibility of the votes even in the presence of control actions, and hybridizes, in effect, approval with pluralitiy voting. We prove that this system is computationally resistant (i.e., the corresponding control problems are NP-hard) to 19 out of 22 types of constructive and destructive control. Thus, SP-AV has more resistances to control than is currently known for any other natural voting system with a polynomial-time winner problem. In particular, SP-AV is (after Copeland voting, see Faliszewski et al. [AAIM-2008, Springer LNCS 5034, pp. 165-176, 2008]) the second natural voting system with an easy winner-determination procedure that is known to have full resistance to constructive control, and unlike Copeland voting it in addition displays broad resistance to destructive control.
237 - Joerg Rothe , Lena Schend 2012
Walsh [Wal10, Wal09], Davies et al. [DKNW10, DKNW11], and Narodytska et al. [NWX11] studied various voting systems empirically and showed that they can often be manipulated effectively, despite their manipulation problems being NP-hard. Such an experimental approach is sorely missing for NP-hard control problems, where control refers to attempts to tamper with the outcome of elections by adding/deleting/partitioning either voters or candidates. We experimentally tackle NP-hard control problems for Bucklin and fallback voting. Among natural voting systems with efficient winner determination, fallback voting is currently known to display the broadest resistance to control in terms of NP-hardness, and Bucklin voting has been shown to behave almost as well in terms of control resistance [ER10, EPR11, EFPR11]. We also investigate control resistance experimentally for plurality voting, one of the first voting systems analyzed with respect to electoral control [BTT92, HHR07]. Our findings indicate that NP-hard control problems can often be solved effectively in practice. Moreover, our experiments allow a more fine-grained analysis and comparison-across various control scenarios, vote distribution models, and voting systems-than merely stating NP-hardness for all these control problems.
Most work on manipulation assumes that all preferences are known to the manipulators. However, in many settings elections are open and sequential, and manipulators may know the already cast votes but may not know the future votes. We introduce a framework, in which manipulators can see the past votes but not the future ones, to model online coalitional manipulation of sequential elections, and we show that in this setting manipulation can be extremely complex even for election systems with simple winner problems. Yet we also show that for some of the most important election systems such manipulation is simple in certain settings. This suggests that when using sequential voting, one should pay great attention to the details of the setting in choosing ones voting rule. Among the highlights of our classifications are: We show that, depending on the size of the manipulative coalition, the online manipulation problem can be complete for each level of the polynomial hierarchy or even for PSPACE. We obtain the most dramatic contrast to date between the nonunique-winner and unique-winner models: Online weighted manipulation for plurality is in P in the nonunique-winner model, yet is coNP-hard (constructive case) and NP-hard (destructive case) in the unique-winner model. And we obtain what to the best of our knowledge are the first P^NP[1]-completeness and P^NP-completeness results in the field of computational social choice, in particular proving such completeness for, respectively, the complexity of 3-candidate and 4-candidate (and unlimited-candidate) online weighted coalition manipulation of veto elections.
Candidate control of elections is the study of how adding or removing candidates can affect the outcome. However, the traditional study of the complexity of candidate control is in the model in which all candidates and votes are known up front. This paper develops a model for studying online control for elections where the structure is sequential with respect to the candidates, and in which the decision regarding adding and deleting must be irrevocably made at the moment the candidate is presented. We show that great complexity---PSPACE-completeness---can occur in this setting, but we also provide within this setting polynomial-time algorithms for the most important of election systems, plurality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا