Do you want to publish a course? Click here

The Complexity of Controlling Candidate-Sequential Elections

192   0   0.0 ( 0 )
 Added by Joerg Rothe
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Candidate control of elections is the study of how adding or removing candidates can affect the outcome. However, the traditional study of the complexity of candidate control is in the model in which all candidates and votes are known up front. This paper develops a model for studying online control for elections where the structure is sequential with respect to the candidates, and in which the decision regarding adding and deleting must be irrevocably made at the moment the candidate is presented. We show that great complexity---PSPACE-completeness---can occur in this setting, but we also provide within this setting polynomial-time algorithms for the most important of election systems, plurality.



rate research

Read More

Most work on manipulation assumes that all preferences are known to the manipulators. However, in many settings elections are open and sequential, and manipulators may know the already cast votes but may not know the future votes. We introduce a framework, in which manipulators can see the past votes but not the future ones, to model online coalitional manipulation of sequential elections, and we show that in this setting manipulation can be extremely complex even for election systems with simple winner problems. Yet we also show that for some of the most important election systems such manipulation is simple in certain settings. This suggests that when using sequential voting, one should pay great attention to the details of the setting in choosing ones voting rule. Among the highlights of our classifications are: We show that, depending on the size of the manipulative coalition, the online manipulation problem can be complete for each level of the polynomial hierarchy or even for PSPACE. We obtain the most dramatic contrast to date between the nonunique-winner and unique-winner models: Online weighted manipulation for plurality is in P in the nonunique-winner model, yet is coNP-hard (constructive case) and NP-hard (destructive case) in the unique-winner model. And we obtain what to the best of our knowledge are the first P^NP[1]-completeness and P^NP-completeness results in the field of computational social choice, in particular proving such completeness for, respectively, the complexity of 3-candidate and 4-candidate (and unlimited-candidate) online weighted coalition manipulation of veto elections.
Prior work on the complexity of bribery assumes that the bribery happens simultaneously, and that the briber has full knowledge of all voters votes. But neither of those assumptions always holds. In many real-world settings, votes come in sequentially, and the briber may have a use-it-or-lose-it moment to decide whether to bribe/alter a given vote, and at the time of making that decision, the briber may not know what votes remaining voters are planning on casting. In this paper, we introduce a model for, and initiate the study of, bribery in such an online, sequential setting. We show that even for election systems whose winner-determination problem is polynomial-time computable, an online, sequential setting may vastly increase the complexity of bribery, in fact jumping the problem up to completeness for high levels of the polynomial hierarchy or even PSPACE. On the other hand, we show that for some natural, important election systems, such a dramatic complexity increase does not occur, and we pinpoint the complexity of their bribery problems in the online, sequential setting.
Previous work on voter control, which refers to situations where a chair seeks to change the outcome of an election by deleting, adding, or partitioning voters, takes for granted that the chair knows all the voters preferences and that all votes are cast simultaneously. However, elections are often held sequentially and the chair thus knows only the previously cast votes and not the future ones, yet needs to decide instantaneously which control action to take. We introduce a framework that models online voter control in sequential elections. We show that the related problems can be much harder than in the standard (non-online) case: For certain election systems, even with efficient winner problems, online control by deleting, adding, or partitioning voters is PSPACE-complete, even if there are only two candidates. In addition, we obtain (by a new characterization of coNP in terms of weight-bounded alternating Turing machines) completeness for coNP in the deleting/adding cases with a bounded deletion/addition limit, and we obtain completeness for NP in the partition cases with an additional restriction. We also show that for plurality, online control by deleting or adding voters is in P, and for partitioning voters is coNP-hard.
Most work on manipulation assumes that all preferences are known to the manipulators. However, in many settings elections are open and sequential, and manipulators may know the already cast votes but may not know the future votes. We introduce a framework, in which manipulators can see the past votes but not the future ones, to model online coalitional manipulation of sequential elections, and we show that in this setting manipulation can be extremely complex even for election systems with simple winner problems. Yet we also show that for some of the most important election systems such manipulation is simple in certain settings. This suggests that when using sequential voting, one should pay great attention to the details of the setting in choosing ones voting rule. Among the highlights of our classifications are: We show that, depending on the size of the manipulative coalition, the online manipulation problem can be complete for each level of the polynomial hierarchy or even for PSPACE. We obtain the most dramatic contrast to date between the nonunique-winner and unique-winner models: Online weighted manipulation for plurality is in P in the nonunique-winner model, yet is coNP-hard (constructive case) and NP-hard (destructive case) in the unique-winner model. And we obtain what to the best of our knowledge are the first PNP[1]-completeness and PNP-completeness results in the field of computational social choice, in particular proving such completeness for, respectively, the complexity of 3-candidate and 4-candidate (and unlimited-candidate) online weighted coalition manipulation of veto elections.
236 - Joerg Rothe , Lena Schend 2012
Walsh [Wal10, Wal09], Davies et al. [DKNW10, DKNW11], and Narodytska et al. [NWX11] studied various voting systems empirically and showed that they can often be manipulated effectively, despite their manipulation problems being NP-hard. Such an experimental approach is sorely missing for NP-hard control problems, where control refers to attempts to tamper with the outcome of elections by adding/deleting/partitioning either voters or candidates. We experimentally tackle NP-hard control problems for Bucklin and fallback voting. Among natural voting systems with efficient winner determination, fallback voting is currently known to display the broadest resistance to control in terms of NP-hardness, and Bucklin voting has been shown to behave almost as well in terms of control resistance [ER10, EPR11, EFPR11]. We also investigate control resistance experimentally for plurality voting, one of the first voting systems analyzed with respect to electoral control [BTT92, HHR07]. Our findings indicate that NP-hard control problems can often be solved effectively in practice. Moreover, our experiments allow a more fine-grained analysis and comparison-across various control scenarios, vote distribution models, and voting systems-than merely stating NP-hardness for all these control problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا