Do you want to publish a course? Click here

Reply to Comment on Thermodynamics of quantum crystalline membranes

122   0   0.0 ( 0 )
 Added by Bruno Amorim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this note, we reply to the comment made by E.I.Kats and V.V.Lebedev [arXiv:1407.4298] on our recent work Thermodynamics of quantum crystalline membranes [Phys. Rev. B 89, 224307 (2014)]. Kats and Lebedev question the validity of the calculation presented in our work, in particular on the use of a Debye momentum as a ultra-violet regulator for the theory. We address and counter argue the criticisms made by Kats and Lebedev to our work.

rate research

Read More

We investigate the thermodynamic properties and the lattice stability of two-dimensional crystalline membranes, such as graphene and related compounds, in the low temperature quantum regime $Trightarrow0$. A key role is played by the anharmonic coupling between in-plane and out-of plane lattice modes that, in the quantum limit, has very different consequences than in the classical regime. The role of retardation, namely of the frequency dependence, in the effective anharmonic interactions turns out to be crucial in the quantum regime. We identify a crossover temperature, $T^{*}$, between classical and quantum regimes, which is $sim 70 - 90$ K for graphene. Below $T^{*}$, the heat capacity and thermal expansion coefficient decrease as power laws with decreasing temperature, tending to zero for $Trightarrow0$ as required by the third law of thermodynamics.
195 - U. Zuelicke 2006
In two recent articles [PRL 90, 026802 (2003); PRB 69, 085307 (2004)], we developed a transport theory for an extended tunnel junction between two interacting fractional-quantum-Hall edge channels, obtaining analytical results for the conductance. Ponomarenko and Averin (PA) have expressed disagreement with our theoretical approach and question the validity of our results (cond-mat/0602532). Here we show why PAs critique is unwarranted.
First version: del Barco et al. submitted recently a comment [arXiv:0812.4070] on our latest Phys. Rev. Lett. [Phys. Rev. Lett. 101, 237204 (2008)], claiming three basic mistakes. We show here that their claims are unjustified and based on erroneous calculations and hasty conclusions. Second version: reply to the modified version of del Barco et al. submitted to Phys. Rev. Lett.
This is a reply to the comment to a letter by D. Mandal, K. Klymko and M. R. DeWeese published as Phys. Rev. Lett. 119, 258001 (2017).
In this reply we discuss definition and estimation of the Fisher exponent in the no-enclaves percolation (NEP) model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا