No Arabic abstract
We consider a 9-PDE (1-space and 1-time) model of plane Couette flow in which the degrees of freedom are severely restricted in the streamwise and cross-stream directions to study spanwise localisation in detail. Of the many steady Eckhaus (spanwise modulational) instabilities identified of global steady states, none lead to a localized state. Localized periodic solutions were found instead which arise in saddle node bifurcations in the Reynolds number. These solutions appear global (domain filling) in narrow (small spanwise) domains yet can be smoothly continued out to fully spanwise-localised states in very wide domains. This smooth localisation behaviour, which has also been seen in fully-resolved duct flow (Okino 2011), indicates that an apparently global flow structure neednt have to suffer a modulational instability to localize in wide domains.
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s$ of the spanwise varying roughness on the total drag and {on} the flow structures. We apply sandgrain roughness, in the form of alternating {rough and smooth} bands to the inner cylinder. Numerically, the Taylor number is $mathcal{O}(10^9)$ and the roughness width is varied between $0.47leq tilde{s}=s/d leq 1.23$, where $d$ is the gap width. Experimentally, we explore $text{Ta}=mathcal{O}(10^{12})$ and $0.61leq tilde s leq 3.74$. For both approaches the radius ratio is fixed at $eta=r_i/r_o = 0.716$, with $r_i$ and $r_o$ the radius of the inner and outer cylinder respectively. We present how the global transport properties and the local flow structures depend on the boundary conditions set by the roughness spacing $tilde{s}$. Both numerically and experimentally, we find a maximum in the angular momentum transport as function of $tilde s$. This can be atributed to the re-arrangement of the large-scale structures triggered by the presence of the rough stripes, leading to correspondingly large-scale turbulent vortices.
Plane Couette flow transitions to turbulence for Re~325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invariant sets in the state space of the Navier Stokes equation, such as upper and lower branch equilibria and periodic and relative periodic solutions, that are quite distinct from the laminar solution. This article reports several heteroclinic connections between such objects and briefly describes a numerical method for locating heteroclinic connections. Computing such connections is essential for understanding the global dynamics of spatially localized structures that occur in transitional plane Couette flow. We show that the nature of streaks and streamwise rolls can change significantly along a heteroclinic connection.
Motivated by recent experimental and numerical studies of coherent structures in wall-bounded shear flows, we initiate a systematic exploration of the hierarchy of unstable invariant solutions of the Navier-Stokes equations. We construct a dynamical, 10^5-dimensional state-space representation of plane Couette flow at Re = 400 in a small, periodic cell and offer a new method of visualizing invariant manifolds embedded in such high dimensions. We compute a new equilibrium solution of plane Couette flow and the leading eigenvalues and eigenfunctions of known equilibria at this Reynolds number and cell size. What emerges from global continuations of their unstable manifolds is a surprisingly elegant dynamical-systems visualization of moderate-Reynolds turbulence. The invariant manifolds tessellate the region of state space explored by transiently turbulent dynamics with a rigid web of continuous and discrete symmetry-induced heteroclinic connections.
Unsteady spatially localized states such as puffs, slugs or spots play an important role in transition to turbulence. In plane Couette flow, stead
We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming PDE systems. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.