Do you want to publish a course? Click here

Dynamics of spatially localized states in transitional plane Couette flow

118   0   0.0 ( 0 )
 Added by Anton Pershin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unsteady spatially localized states such as puffs, slugs or spots play an important role in transition to turbulence. In plane Couette flow, stead



rate research

Read More

We demonstrate the existence of a large number of exact solutions of plane Couette flow, which share the topology of known periodic solutions but are localized in space. Solutions of different size are organized in a snakes-and-ladders structure strikingly similar to that observed for simpler pattern-forming PDE systems. These new solutions are a step towards extending the dynamical systems view of transitional turbulence to spatially extended flows.
136 - Paul Manneville 2016
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical simulations that we have performed on a pattern displaying a wavelength modulation show a relaxation of that modulation in agreement with what one would expect from a standard approach in terms of dissipative structures in extended geometry though the structuration develops on a turbulent background. Some consequences are discussed.
Plane Couette flow transitions to turbulence for Re~325 even though the laminar solution with a linear profile is linearly stable for all Re (Reynolds number). One starting point for understanding this subcritical transition is the existence of invariant sets in the state space of the Navier Stokes equation, such as upper and lower branch equilibria and periodic and relative periodic solutions, that are quite distinct from the laminar solution. This article reports several heteroclinic connections between such objects and briefly describes a numerical method for locating heteroclinic connections. Computing such connections is essential for understanding the global dynamics of spatially localized structures that occur in transitional plane Couette flow. We show that the nature of streaks and streamwise rolls can change significantly along a heteroclinic connection.
The transitional regime of plane channel flow is investigated {above} the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains. Statistics of laminar-turbulent spatio-temporal intermittency are reported. The geometry of the pattern is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in this regime, with a comparison to experiments. High-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of the two former quantities have non-trivial shapes, characterized by a large kurtosis and/or skewness. Interestingly, we observe a strong linear correlation between their kurtosis and their skewness squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.
Motivated by recent experimental and numerical studies of coherent structures in wall-bounded shear flows, we initiate a systematic exploration of the hierarchy of unstable invariant solutions of the Navier-Stokes equations. We construct a dynamical, 10^5-dimensional state-space representation of plane Couette flow at Re = 400 in a small, periodic cell and offer a new method of visualizing invariant manifolds embedded in such high dimensions. We compute a new equilibrium solution of plane Couette flow and the leading eigenvalues and eigenfunctions of known equilibria at this Reynolds number and cell size. What emerges from global continuations of their unstable manifolds is a surprisingly elegant dynamical-systems visualization of moderate-Reynolds turbulence. The invariant manifolds tessellate the region of state space explored by transiently turbulent dynamics with a rigid web of continuous and discrete symmetry-induced heteroclinic connections.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا