An $r$-matching in a graph $G$ is a collection of edges in $G$ such that the distance between any two edges is at least $r$. A $2$-matching is also called an induced matching. In this paper, we estimate the maximum number of $r$-matchings in a tree of fixed order. We also prove that the $n$-vertex path has the maximum number of induced matchings among all $n$-vertex trees.
A well-known conjecture by Lovasz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with $n$ vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically $cgamma^n$, where $c>0$ and $gamma sim 1.14196$ is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.
A set of vertices $S$ of a graph $G$ is a (geodesic)convex set, if $S$ contains all the vertices belonging to any shortest path connecting between two vertices of $S$. The cardinality of maximum proper convex set of $G$ is called the convexity number, con$(G)$ of $G$. The complementary prism $Gbar{G}$ of $G$ is obtained from the disjoint union of $G$ and its complement $bar{G}$ by adding the edges of a perfect matching between them. In this work, we examine the convex sets of the complementary prism of a tree and derive formulas for the convexity numbers of the complementary prisms of all trees.
We show that every cubic bridgeless graph with n vertices has at least 3n/4-10 perfect matchings. This is the first bound that differs by more than a constant from the maximal dimension of the perfect matching polytope.
Tree-chromatic number is a chromatic version of treewidth, where the cost of a bag in a tree-decomposition is measured by its chromatic number rather than its size. Path-chromatic number is defined analogously. These parameters were introduced by Seymour (JCTB 2016). In this paper, we survey all the known results on tree- and path-chromatic number and then present some new results and conjectures. In particular, we propose a version of Hadwigers Conjecture for tree-chromatic number. As evidence that our conjecture may be more tractable than Hadwigers Conjecture, we give a short proof that every $K_5$-minor-free graph has tree-chromatic number at most $4$, which avoids the Four Colour Theorem. We also present some hardness results and conjectures for computing tree- and path-chromatic number.
For a simple graph $G=(V,E),$ let $mathcal{S}_+(G)$ denote the set of real positive semidefinite matrices $A=(a_{ij})$ such that $a_{ij} eq 0$ if ${i,j}in E$ and $a_{ij}=0$ if ${i,j} otin E$. The maximum positive semidefinite nullity of $G$, denoted $operatorname{M}_+(G),$ is $max{operatorname{null}(A)|Ain mathcal{S}_+(G)}.$ A tree cover of $G$ is a collection of vertex-disjoint simple trees occurring as induced subgraphs of $G$ that cover all the vertices of $G$. The tree cover number of $G$, denoted $T(G)$, is the cardinality of a minimum tree cover. It is known that the tree cover number of a graph and the maximum positive semidefinite nullity of a graph are equal for outerplanar graphs, and it was conjectured in 2011 that $T(G)leq M_+(G)$ for all graphs [Barioli et al., Minimum semidefinite rank of outerplanar graphs and the tree cover number, $ Elec. J. Lin. Alg.,$ 2011]. We show that the conjecture is true for certain graph families. Furthermore, we prove bounds on $T(G)$ to show that if $G$ is a connected outerplanar graph on $ngeq 2$ vertices, then $operatorname{M}_+(G)=T(G)leq leftlceilfrac{n}{2}rightrceil$, and if $G$ is a connected outerplanar graph on $ngeq 6$ vertices with no three or four cycle, then $operatorname{M}_+(G)=T(G)leq frac{n}{3}$. We also characterize connected outerplanar graphs with $operatorname{M}_+(G)=T(G)=leftlceilfrac{n}{2}rightrceil.$