Do you want to publish a course? Click here

Notes on Tree- and Path-chromatic Number

118   0   0.0 ( 0 )
 Added by Tony Huynh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Tree-chromatic number is a chromatic version of treewidth, where the cost of a bag in a tree-decomposition is measured by its chromatic number rather than its size. Path-chromatic number is defined analogously. These parameters were introduced by Seymour (JCTB 2016). In this paper, we survey all the known results on tree- and path-chromatic number and then present some new results and conjectures. In particular, we propose a version of Hadwigers Conjecture for tree-chromatic number. As evidence that our conjecture may be more tractable than Hadwigers Conjecture, we give a short proof that every $K_5$-minor-free graph has tree-chromatic number at most $4$, which avoids the Four Colour Theorem. We also present some hardness results and conjectures for computing tree- and path-chromatic number.

rate research

Read More

144 - Mikhail Isaev , Mihyun Kang 2021
We determine the asymptotic behaviour of the chromatic number of exchangeable random graphs defined by step-regulated graphons. Furthermore, we show that the upper bound holds for a general graphon. We also extend these results to sparse random graphs obtained by percolations on graphons.
Let Q(n,c) denote the minimum clique size an n-vertex graph can have if its chromatic number is c. Using Ramsey graphs we give an exact, albeit implicit, formula for the case c is at least (n+3)/2.
Resolving a problem raised by Norin, we show that for each $k in mathbb{N}$, there exists an $f(k) le 7k$ such that every graph $G$ with chromatic number at least $f(k)+1$ contains a subgraph $H$ with both connectivity and chromatic number at least $k$. This result is best-possible up to multiplicative constants, and sharpens earlier results of Alon-Kleitman-Thomassen-Saks-Seymour from 1987 showing that $f(k) = O(k^3)$, and of Chudnovsky-Penev-Scott-Trotignon from 2013 showing that $f(k) = O(k^2)$. Our methods are robust enough to handle list colouring as well: we also show that for each $k in mathbb{N}$, there exists an $f_ell(k) le 4k$ such that every graph $G$ with list chromatic number at least $f_ell(k)+1$ contains a subgraph $H$ with both connectivity and list chromatic number at least $k$. This result is again best-possible up to multiplicative constants; here, unlike with $f(cdot)$, even the existence of $f_ell(cdot)$ appears to have been previously unknown.
While the game chromatic number of a forest is known to be at most 4, no simple criteria are known for determining the game chromatic number of a forest. We first state necessary and sufficient conditions for forests with game chromatic number 2 and then investigate the differences between forests with game chromatic number 3 and 4. In doing so, we present a minimal example of a forest with game chromatic number 4, criteria for determining the game chromatic number of a forest without vertices of degree 3, and an example of a forest with maximum degree 3 and game chromatic number 4.
A strong edge colouring of a graph is an assignment of colours to the edges of the graph such that for every colour, the set of edges that are given that colour form an induced matching in the graph. The strong chromatic index of a graph $G$, denoted by $chi_s(G)$, is the minimum number of colours needed in any strong edge colouring of $G$. A graph is said to be emph{chordless} if there is no cycle in the graph that has a chord. Faudree, Gyarfas, Schelp and Tuza~[The Strong Chromatic Index of Graphs, Ars Combin., 29B (1990), pp.~205--211] considered a particular subclass of chordless graphs, namely the class of graphs in which all the cycle lengths are multiples of four, and asked whether the strong chromatic index of these graphs can be bounded by a linear function of the maximum degree. Chang and Narayanan~[Strong Chromatic Index of 2-degenerate Graphs, J. Graph Theory, 73(2) (2013), pp.~119--126] answered this question in the affirmative by proving that if $G$ is a chordless graph with maximum degree $Delta$, then $chi_s(G) leq 8Delta -6$. We improve this result by showing that for every chordless graph $G$ with maximum degree $Delta$, $chi_s(G)leq 3Delta$. This bound is tight up to to an additive constant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا