No Arabic abstract
We investigated the impact of supernova feedback in gas-rich dwarf galaxies experiencing a low-to-moderate star formation rate, typical of relatively quiescent phases between starbursts. We calculated the long term evolution of the ISM and the metal-rich SN ejecta using 3D hydrodynamic simulations, in which the feedback energy is deposited by SNeII exploding in distinct OB associations. We found that a circulation flow similar to galactic fountains is generally established, with some ISM lifted at heights of one to few kpc above the galactic plane. This gas forms an extra-planar layer, which falls back to the plane in about $10^8$ yr, once the star formation stops. Very little or no ISM is expelled outside the galaxy system for the considered SFRs, even though in the most powerful model the SN energy is comparable to the gas binding energy. The metal-rich SN ejecta is instead more vulnerable to the feedback and we found that a significant fraction (25-80%) is vented in the intergalactic medium, even for low SN rate ($7times 10^{-5}$ - $7times 10^{-4}$ yr$^{-1}$). About half of the metals retained by the galaxy are located far ($z >$ 500 pc) from the galactic plane. Moreover, our models indicate that the circulation of the metal-rich gas out from and back to the galactic disk is not able to erase the chemical gradients imprinted by the (centrally concentrated) SN explosions.
The Local Group (LG) hosts many dwarf galaxies with diverse physical characteristics in terms of morphology, mass, star formation, and metallicity. To this end, LG can offer a unique site to tackle questions about the formation and evolution of galaxies by providing detailed information. While large telescopes are often the first choices for such studies, small telescope surveys that perform dedicated observations are still important, particularly in studying bright objects in the nearby universe. In this regard, we conducted a nine epoch survey of 55 dwarf galaxies called the Local Group dwarf galaxies survey using the 2.5m Isaac Newton Telescope (INT) in La Palma to identify Long-Period Variable (LPV) stars, namely Asymptotic Giant Branch (AGB) and Red Super Giant (RSG) stars. AGB stars formed at different times and studying their radial distribution and mass-loss rate can shed light on the structure formation in galaxies. To further investigate the evolutionary path of these galaxies, we construct their star formation history (SFH) using the LPV stars, which are at the final stages of their evolution and therefore experience brightness fluctuations on the timescales between hundred to thousand days. In this paper, we present some of the results of the Local Group dwarf galaxies survey.
Star forming dwarf galaxies (SFDGs) have a high gas content and low metallicities, reminiscent of the basic entities in hierarchical galaxy formation scenarios. In the young universe they probably also played a major role in the cosmic reionization. Their abundant presence in the local volume and their youthful character make them ideal objects for detailed studies of the initial stellar mass function (IMF), fundamental star formation processes and its feedback to the interstellar medium. Occasionally we witness SFDGs involved in extreme starbursts, giving rise to strongly elevated production of super star clusters and global superwinds, mechanisms yet to be explored in more detail. SFDGs is the initial state of all dwarf galaxies and the relation to the environment provides us with a key to how different types of dwarf galaxies are emerging. In this review we will put the emphasis on the exotic starburst phase, as it seems less important for present day galaxy evolution but perhaps fundamental in the initial phase of galaxy formation.
We have updated the Munich galaxy formation model, L-Galaxies, to follow the radial distributions of stars and atomic and molecular gas in galaxy discs. We include an H2-based star-formation law, as well as a detailed chemical-enrichment model with explicit mass-dependent delay times for SN-II, SN-Ia and AGB stars. Information about the star formation, feedback and chemical-enrichment histories of discs is stored in 12 concentric rings. The new model retains the success of its predecessor in reproducing the observed evolution of the galaxy population, in particular, stellar mass functions and passive fractions over the redshift range 0<=z<=3 and mass range 8<=log(M_*/Msun)<=12, the black hole-bulge mass relation at z=0, galaxy morphology as a function of stellar mass and the mass-metallicity relations of both stellar and gas components. In addition, its detailed modelling of the radial structure of discs allows qualitatively new comparisons with observation, most notably with the relative sizes and masses of the stellar, atomic and molecular components in discs. Good agreement is found with recent data. Comparison of results obtained for simulations differing in mass resolution by more than two orders of magnitude shows that all important distributions are numerically well converged even for this more detailed model. An examination of metallicity and surface-density gradients in the stars and gas indicates that our new model, with star formation, chemical enrichment and feedback calculated self-consistently on local disc scales, reproduces some but not all of the trends seen in recent many-galaxy IFU surveys.
We explore the mass-assembly and chemical enrichment histories of star forming galaxies by applying a population synthesis method to a sample of 84828 galaxies from the Sloan Digital Sky Survey Data Release 5. Our method decomposes the entire observed spectrum in terms of a sum of simple stellar populations spanning a wide range of ages and metallicities, thus allowing the reconstruction of galaxy histories. A comparative study of galaxy evolution is presented, where galaxies are grouped onto bins of nebular abundances or mass. We find that galaxies whose warm interstellar medium is poor in heavy elements are slow in forming stars. Their stellar metallicities also rise slowly with time, reaching their current values ($Z_star sim 1/3 Z_odot$) in the last $sim 100$ Myr of evolution. Systems with metal rich nebulae, on the other hand, assembled most of their mass and completed their chemical evolution long ago, reaching $Z_star sim Z_odot$ already at lookback times of several Gyr. These same trends, which are ultimately a consequence of galaxy downsizing, appear when galaxies are grouped according to their stellar mass. The reconstruction of galaxy histories to this level of detail out of integrated spectra offers promising prospects in the field of galaxy evolution theories.
We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1 resolution with ALMA in 16 edge-on galaxies, which also have 2 spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas (outflow-types), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.