Do you want to publish a course? Click here

Uncovering the chemical enrichment and mass-assembly histories of star-forming galaxies

72   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the mass-assembly and chemical enrichment histories of star forming galaxies by applying a population synthesis method to a sample of 84828 galaxies from the Sloan Digital Sky Survey Data Release 5. Our method decomposes the entire observed spectrum in terms of a sum of simple stellar populations spanning a wide range of ages and metallicities, thus allowing the reconstruction of galaxy histories. A comparative study of galaxy evolution is presented, where galaxies are grouped onto bins of nebular abundances or mass. We find that galaxies whose warm interstellar medium is poor in heavy elements are slow in forming stars. Their stellar metallicities also rise slowly with time, reaching their current values ($Z_star sim 1/3 Z_odot$) in the last $sim 100$ Myr of evolution. Systems with metal rich nebulae, on the other hand, assembled most of their mass and completed their chemical evolution long ago, reaching $Z_star sim Z_odot$ already at lookback times of several Gyr. These same trends, which are ultimately a consequence of galaxy downsizing, appear when galaxies are grouped according to their stellar mass. The reconstruction of galaxy histories to this level of detail out of integrated spectra offers promising prospects in the field of galaxy evolution theories.



rate research

Read More

Recent advances in stellar population modelling and avalanches of data from mega-surveys have revived the interest in techniques to extract information about galaxy evolution from integrated spectra. This contribution provides an informal and (hopefully) pedagogical, but inevitably biased and incomplete introduction to this field. Emphasis is given to the several choices one has to make in the process of modelling galaxy spectra.
We investigated the impact of supernova feedback in gas-rich dwarf galaxies experiencing a low-to-moderate star formation rate, typical of relatively quiescent phases between starbursts. We calculated the long term evolution of the ISM and the metal-rich SN ejecta using 3D hydrodynamic simulations, in which the feedback energy is deposited by SNeII exploding in distinct OB associations. We found that a circulation flow similar to galactic fountains is generally established, with some ISM lifted at heights of one to few kpc above the galactic plane. This gas forms an extra-planar layer, which falls back to the plane in about $10^8$ yr, once the star formation stops. Very little or no ISM is expelled outside the galaxy system for the considered SFRs, even though in the most powerful model the SN energy is comparable to the gas binding energy. The metal-rich SN ejecta is instead more vulnerable to the feedback and we found that a significant fraction (25-80%) is vented in the intergalactic medium, even for low SN rate ($7times 10^{-5}$ - $7times 10^{-4}$ yr$^{-1}$). About half of the metals retained by the galaxy are located far ($z >$ 500 pc) from the galactic plane. Moreover, our models indicate that the circulation of the metal-rich gas out from and back to the galactic disk is not able to erase the chemical gradients imprinted by the (centrally concentrated) SN explosions.
108 - Kevin Bundy 2005
We characterize the mass-dependent evolution in a large sample of more than 8,000 galaxies using spectroscopic redshifts drawn from the DEEP2 Galaxy Redshift Survey in the range 0.4 < z < 1.4 and stellar masses calculated from K-band photometry obtained at Palomar Observatory. Using restframe (U-B) color and [OII] equivalent widths, we distinguish star-forming from passive populations in order to explore the nature of downsizing--a pattern in which the sites of active star formation shift from high mass galaxies at early times to lower mass systems at later epochs. Over the redshift range probed, we identify a mass limit, M_Q, above which star formation appears to be quenched. The physical mechanisms responsible for downsizing can thus be empirically quantified by charting the evolution in this threshold mass. We find that M_Q decreases with time by a factor of ~3 across the redshift range sampled according with a redshift dependence of (1+z)^3.5. To further constrain possible quenching mechanisms, we investigate how this downsizing signal depends on local galaxy environment. For the majority of galaxies in regions near the median density, there is no significant correlation between downsizing and environment. However, a trend is observed in the comparison between more extreme environments that are more than 3 times overdense or underdense relative to the median. Here, we find that downsizing is accelerated in overdense regions which host higher numbers of massive, early-type galaxies and fewer late-types as compared to the underdense regions. Our results significantly constrain recent suggestions for the origin of downsizing and indicate that the process for quenching star formation must, primarily, be internally driven. (Abridged)
We present self-consistent star formation rates derived through pan-spectral analysis of galaxies drawn from the Galaxy and Mass Assembly (GAMA) survey. We determine the most appropriate form of dust obscuration correction via application of a range of extinction laws drawn from the literature as applied to Halpha, [O{II}] and UV luminosities. These corrections are applied to a sample of 31,508 galaxies from the GAMA survey at z < 0.35. We consider several different obscuration curves, including those of Milky Way, Calzetti (2001) and Fischera and Dopita (2005) curves and their effects on the observed luminosities. At the core of this technique is the observed Balmer decrement, and we provide a prescription to apply optimal obscuration corrections using the Balmer decrement. We carry out an analysis of the star formation history (SFH) using stellar population synthesis tools to investigate the evolutionary history of our sample of galaxies as well as to understand the effects of variation in the Initial Mass Function (IMF) and the effects this has on the evolutionary history of galaxies. We find that the Fischera and Dopita (2005) obscuration curve with an R_{v} value of 4.5 gives the best agreement between the different SFR indicators. The 2200A feature needed to be removed from this curve to obtain complete consistency between all SFR indicators suggesting that this feature may not be common in the average integrated attenuation of galaxy emission. We also find that the UV dust obscuration is strongly dependent on the SFR.
We present evidence for stochastic star formation histories in low-mass (M* < 10^10 Msun) galaxies from observations within the Galaxy And Mass Assembly (GAMA) survey. For ~73,000 galaxies between 0.05<z<0.32, we calculate star formation rates (SFR) and specific star formation rates (SSFR = SFR/M*) from spectroscopic Halpha measurements and apply dust corrections derived from Balmer decrements. We find a dependence of SSFR on stellar mass, such that SSFRs decrease with increasing stellar mass for star-forming galaxies, and for the full sample, SSFRs decrease as a stronger function of stellar mass. We use simple parametrizations of exponentially declining star formation histories to investigate the dependence on stellar mass of the star formation timescale and the formation redshift. We find that parametrizations previously fit to samples of z~1 galaxies cannot recover the distributions of SSFRs and stellar masses observed in the GAMA sample between 0.05<z<0.32. In particular, a large number of low-mass (M* < 10^10 Msun) galaxies are observed to have much higher SSFRs than can be explained by these simple models over the redshift range of 0.05<z<0.32, even when invoking mass-dependent staged evolution. For such a large number of galaxies to maintain low stellar masses, yet harbour such high SSFRs, requires the late onset of a weak underlying exponentially declining SFH with stochastic bursts of star formation superimposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا