No Arabic abstract
Continuous collision detection (CCD) and response methods are widely adopted in dynamics simulation of deformable models. They are history-based, as their success is strictly based on an assumption of a collision-free state at the start of each time interval. On the other hand, in many applications surfaces have normals defined to designate their orientation (i.e. front- and back-face), yet CCD methods are totally blind to such orientation identification (thus are orientation-free). We notice that if such information is utilized, many penetrations can be untangled. In this paper we present a history-free method for separation of two penetrating meshes, where at least one of them has clarified surface orientation. This method first computes all edge-face (E-F) intersections with discrete collision detection (DCD), and then builds a number of penetration stencils. On response, the stencil vertices are relocated into a penetration-free state, via a global displacement minimizer. Our method is very effective for handling penetration between two meshes, being it an initial configuration or in the middle of physics simulation. The major limitation is that it is not applicable to self-collision within one mesh at the time being.
The aim of tool path planning is to maximize the efficiency against some given precision criteria. In practice, scallop height should be kept constant to avoid unnecessary cutting, while the tool path should be smooth enough to maintain a high feed rate. However, iso-scallop and smoothness often conflict with each other. Existing methods smooth iso-scallop paths one-by-one, which make the final tool path far from being globally optimal. This paper proposes a new framework for tool path optimization. It views a family of iso-level curves of a scalar function defined over the surface as tool path so that desired tool path can be generated by finding the function that minimizes certain energy functional and different objectives can be considered simultaneously. We use the framework to plan globally optimal tool path with respect to iso-scallop and smoothness. The energy functionals for planning iso-scallop, smoothness, and optimal tool path are respectively derived, and the path topology is studied too. Experimental results are given to show the effectiveness of the proposed methods.
In this paper, we introduce Point2Mesh, a technique for reconstructing a surface mesh from an input point cloud. Instead of explicitly specifying a prior that encodes the expected shape properties, the prior is defined automatically using the input point cloud, which we refer to as a self-prior. The self-prior encapsulates reoccurring geometric repetitions from a single shape within the weights of a deep neural network. We optimize the network weights to deform an initial mesh to shrink-wrap a single input point cloud. This explicitly considers the entire reconstructed shape, since shared local kernels are calculated to fit the overall object. The convolutional kernels are optimized globally across the entire shape, which inherently encourages local-scale geometric self-similarity across the shape surface. We show that shrink-wrapping a point cloud with a self-prior converges to a desirable solution; compared to a prescribed smoothness prior, which often becomes trapped in undesirable local minima. While the performance of traditional reconstruction approaches degrades in non-ideal conditions that are often present in real world scanning, i.e., unoriented normals, noise and missing (low density) parts, Point2Mesh is robust to non-ideal conditions. We demonstrate the performance of Point2Mesh on a large variety of shapes with varying complexity.
Spectral geometric methods have brought revolutionary changes to the field of geometry processing -- however, when the data to be processed exhibits severe partiality, such methods fail to generalize. As a result, there exists a big performance gap between methods dealing with complete shapes, and methods that address missing geometry. In this paper, we propose a possible way to fill this gap. We introduce the first method to compute compositions of non-rigidly deforming shapes, without requiring to solve first for a dense correspondence between the given partial shapes. We do so by operating in a purely spectral domain, where we define a union operation between short sequences of eigenvalues. Working with eigenvalues allows to deal with unknown correspondence, different sampling, and different discretization (point clouds and meshes alike), making this operation especially robust and general. Our approach is data-driven, and can generalize to isometric and non-isometric deformations of the surface, as long as these stay within the same semantic class (e.g., human bodies), as well as to partiality artifacts not seen at training time.
Conformal Geometric Algebra (CGA) is a framework that allows the representation of objects, such as points, planes and spheres, and deformations, such as translations, rotations and dilations as uniform vectors, called multivectors. In this work, we demonstrate the merits of multivector usage with a novel, integrated rigged character simulation framework based on CGA. In such a framework, and for the first time, one may perform real-time cuts and tears as well as drill holes on a rigged 3D model. These operations can be performed before and/or after model animation, while maintaining deformation topology. Moreover, our framework permits generation of intermediate keyframes on-the-fly based on user input, apart from the frames provided in the model data. We are motivated to use CGA as it is the lowest-dimension extension of dual-quaternion algebra that amends the shortcomings of the majority of existing animation and deformation techniques. Specifically, we no longer need to maintain objects of multiple algebras and constantly transmute between them, such as matrices, quaternions and dual-quaternions, and we can effortlessly apply dilations. Using such an all-in-one geometric framework allows for better maintenance and optimization and enables easier interpolation and application of all native deformations. Furthermore, we present these three novel algorithms in a single CGA representation which enables cutting, tearing and drilling of the input rigged model, where the output model can be further re-deformed in interactive frame rates. These close to real-time cut,tear and drill algorithms can enable a new suite of applications, especially under the scope of a medical VR simulation.
Mimicking natural tessellation patterns is a fascinating multi-disciplinary problem. Geometric methods aiming at reproducing such partitions on surface meshes are commonly based on the Voronoi model and its variants, and are often faced with challenging issues such as metric estimation, geometric, topological complications, and most critically parallelization. In this paper, we introduce an alternate model which may be of value for resolving these issues. We drop the assumption that regions need to be separated by lines. Instead, we regard region boundaries as narrow bands and we model the partition as a set of smooth functions layered over the surface. Given an initial set of seeds or regions, the partition emerges as the solution of a time dependent set of partial differential equations describing concurrently evolving fronts on the surface. Our solution does not require geodesic estimation, elaborate numerical solvers, or complicated bookkeeping data structures. The cost per time-iteration is dominated by the multiplication and addition of two sparse matrices. Extension of our approach in a Lloyds algorithm fashion can be easily achieved and the extraction of the dual mesh can be conveniently preformed in parallel through matrix algebra. As our approach relies mainly on basic linear algebra kernels, it lends itself to efficient implementation on modern graphics hardware.