Do you want to publish a course? Click here

An All-In-One Geometric Algorithm for Cutting, Tearing, and Drilling Deformable Models

63   0   0.0 ( 0 )
 Added by Manos Kamarianakis
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Conformal Geometric Algebra (CGA) is a framework that allows the representation of objects, such as points, planes and spheres, and deformations, such as translations, rotations and dilations as uniform vectors, called multivectors. In this work, we demonstrate the merits of multivector usage with a novel, integrated rigged character simulation framework based on CGA. In such a framework, and for the first time, one may perform real-time cuts and tears as well as drill holes on a rigged 3D model. These operations can be performed before and/or after model animation, while maintaining deformation topology. Moreover, our framework permits generation of intermediate keyframes on-the-fly based on user input, apart from the frames provided in the model data. We are motivated to use CGA as it is the lowest-dimension extension of dual-quaternion algebra that amends the shortcomings of the majority of existing animation and deformation techniques. Specifically, we no longer need to maintain objects of multiple algebras and constantly transmute between them, such as matrices, quaternions and dual-quaternions, and we can effortlessly apply dilations. Using such an all-in-one geometric framework allows for better maintenance and optimization and enables easier interpolation and application of all native deformations. Furthermore, we present these three novel algorithms in a single CGA representation which enables cutting, tearing and drilling of the input rigged model, where the output model can be further re-deformed in interactive frame rates. These close to real-time cut,tear and drill algorithms can enable a new suite of applications, especially under the scope of a medical VR simulation.



rate research

Read More

In this work, we present an integrated geometric framework: deep- cut that enables for the first time a user to geometrically and algorithmically cut, tear and drill the surface of a skinned model without prior constraints, layered on top of a custom soft body mesh deformation algorithm. Both layered algorithms in this frame- work yield real-time results and are amenable for mobile Virtual Reality, in order to be utilized in a variety of interactive application scenarios. Our framework dramatically improves real-time user experience and task performance in VR, without pre-calculated or artificially designed cuts, tears, drills or surface deformations via predefined rigged animations, which is the current state-of-the-art in mobile VR. Thus our framework improves user experience on one hand, on the other hand saves both time and costs from expensive, manual, labour-intensive design pre-calculation stages.
193 - Jinshan Zhang 2008
Counting the number of all the matchings on a bipartite graph has been transformed into calculating the permanent of a matrix obtained from the extended bipartite graph by Yan Huo, and Rasmussen presents a simple approach (RM) to approximate the permanent, which just yields a critical ratio O($nomega(n)$) for almost all the 0-1 matrices, provided its a simple promising practical way to compute this #P-complete problem. In this paper, the performance of this method will be shown when its applied to compute all the matchings based on that transformation. The critical ratio will be proved to be very large with a certain probability, owning an increasing factor larger than any polynomial of $n$ even in the sense for almost all the 0-1 matrices. Hence, RM fails to work well when counting all the matchings via computing the permanent of the matrix. In other words, we must carefully utilize the known methods of estimating the permanent to count all the matchings through that transformation.
In this paper, we introduce Point2Mesh, a technique for reconstructing a surface mesh from an input point cloud. Instead of explicitly specifying a prior that encodes the expected shape properties, the prior is defined automatically using the input point cloud, which we refer to as a self-prior. The self-prior encapsulates reoccurring geometric repetitions from a single shape within the weights of a deep neural network. We optimize the network weights to deform an initial mesh to shrink-wrap a single input point cloud. This explicitly considers the entire reconstructed shape, since shared local kernels are calculated to fit the overall object. The convolutional kernels are optimized globally across the entire shape, which inherently encourages local-scale geometric self-similarity across the shape surface. We show that shrink-wrapping a point cloud with a self-prior converges to a desirable solution; compared to a prescribed smoothness prior, which often becomes trapped in undesirable local minima. While the performance of traditional reconstruction approaches degrades in non-ideal conditions that are often present in real world scanning, i.e., unoriented normals, noise and missing (low density) parts, Point2Mesh is robust to non-ideal conditions. We demonstrate the performance of Point2Mesh on a large variety of shapes with varying complexity.
157 - Juntao Ye 2014
Continuous collision detection (CCD) and response methods are widely adopted in dynamics simulation of deformable models. They are history-based, as their success is strictly based on an assumption of a collision-free state at the start of each time interval. On the other hand, in many applications surfaces have normals defined to designate their orientation (i.e. front- and back-face), yet CCD methods are totally blind to such orientation identification (thus are orientation-free). We notice that if such information is utilized, many penetrations can be untangled. In this paper we present a history-free method for separation of two penetrating meshes, where at least one of them has clarified surface orientation. This method first computes all edge-face (E-F) intersections with discrete collision detection (DCD), and then builds a number of penetration stencils. On response, the stencil vertices are relocated into a penetration-free state, via a global displacement minimizer. Our method is very effective for handling penetration between two meshes, being it an initial configuration or in the middle of physics simulation. The major limitation is that it is not applicable to self-collision within one mesh at the time being.
We introduce a large scale benchmark for continuous collision detection (CCD) algorithms, composed of queries manually constructed to highlight challenging degenerate cases and automatically generated using existing simulators to cover common cases. We use the benchmark to evaluate the accuracy, correctness, and efficiency of state-of-the-art continuous collision detection algorithms, both with and without minimal separation. We discover that, despite the widespread use of CCD algorithms, existing algorithms are either: (1) correct but impractically slow, (2) efficient but incorrect, introducing false negatives which will lead to interpenetration, or (3) correct but over conservative, reporting a large number of false positives which might lead to inaccuracies when integrated in a simulator. By combining the seminal interval root finding algorithm introduced by Snyder in 1992 with modern predicate design techniques, we propose a simple and efficient CCD algorithm. This algorithm is competitive with state of the art methods in terms of runtime while conservatively reporting the time of impact and allowing explicit trade off between runtime efficiency and number of false positives reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا