Do you want to publish a course? Click here

Singular solutions of conformal Hessian equation

100   0   0.0 ( 0 )
 Added by Serge Vladuts
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We show that for any $epsilonin ]0,1[$ there exists an analytic outside zero solution to a uniformly elliptic conformal Hessian equation in a ball $BsubsetR^5$ which belongs to $C^{1,epsilon} (B)setminus C^{1,epsilon+} (B)$.



rate research

Read More

147 - Kin Ming Hui , Sunghoon Kim 2014
Let $Omega$ be a smooth bounded domain in $R^n$, $nge 3$, $0<mlefrac{n-2}{n}$, $a_1,a_2,..., a_{i_0}inOmega$, $delta_0=min_{1le ile i_0}{dist }(a_i,1Omega)$ and let $Omega_{delta}=Omegasetminuscup_{i=1}^{i_0}B_{delta}(a_i)$ and $hat{Omega}=Omegasetminus{a_1,...,a_{i_0}}$. For any $0<delta<delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=Delta u^m$ in $Omega_{delta}times (0,T)$ for some $T>0$. We will prove the existence of singular solutions of this equation in $hat{Omega}times (0,T)$ for some $T>0$ that blow-up at the points $a_1,..., a_{i_0}$.
181 - Kin Ming Hui , Soojung Kim 2015
We study the asymptotic large time behavior of singular solutions of the fast diffusion equation $u_t=Delta u^m$ in $({mathbb R}^nsetminus{0})times(0,infty)$ in the subcritical case $0<m<frac{n-2}{n}$, $nge3$. Firstly, we prove the existence of singular solution $u$ of the above equation that is trapped in between self-similar solutions of the form of $t^{-alpha} f_i(t^{-beta}x)$, $i=1,2$, with initial value $u_0$ satisfying $A_1|x|^{-gamma}le u_0le A_2|x|^{-gamma}$ for some constants $A_2>A_1>0$ and $frac{2}{1-m}<gamma<frac{n-2}{m}$, where $beta:=frac{1}{2-gamma(1-m)}$, $alpha:=frac{2beta-1}{1-m},$ and the self-similar profile $f_i$ satisfies the elliptic equation $$ Delta f^m+alpha f+beta xcdot abla f=0quad mbox{in ${mathbb R}^nsetminus{0}$} $$ with $lim_{|x|to0}|x|^{frac{ alpha}{ beta}}f_i(x)=A_i$ and $lim_{|x|toinfty}|x|^{frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $frac{2}{1-m}<gamma<n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function $$ tilde u(y,tau):= t^{,alpha} u(t^{,beta} y,t),quad{ tau:=log t}, $$ converges to some self-similar profile $f$ as $tautoinfty$.
In this paper, we derive a priori interior Hessian estimates for Lagrangian mean curvature equation if the Lagrangian phase is supercritical and has bounded second derivatives.
144 - Kin Ming Hui 2009
Let $0le u_0(x)in L^1(R^2)cap L^{infty}(R^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|ge r_1$ and is monotone decreasing for all $|x|ge r_1$ for some constant $r_1>0$ and ${ess}inf_{2{B}_{r_1}(0)}u_0ge{ess} sup_{R^2setminus B_{r_2}(0)}u_0$ for some constant $r_2>r_1$. Then under some mild decay conditions at infinity on the initial value $u_0$ we will extend the result of P. Daskalopoulos, M.A. del Pino and N. Sesum cite{DP2}, cite{DS}, and prove the collapsing behaviour of the maximal solution of the equation $u_t=Deltalog u$ in $R^2times (0,T)$, $u(x,0)=u_0(x)$ in $R^2$, near its extinction time $T=int_{R^2}u_0dx/4pi$.
166 - Hattab Mouajria , Slim Tayachi , 2019
In this paper we study global well-posedness and long time asymptotic behavior of solutions to the nonlinear heat equation with absorption, $ u_t - Delta u + |u|^alpha u =0$, where $u=u(t,x)in {mathbb R}, $ $(t,x)in (0,infty)times{mathbb R}^N$ and $alpha>0$. We focus particularly on highly singular initial values which are antisymmetric with respect to the variables $x_1,; x_2,; cdots,; x_m$ for some $min {1,2, cdots, N}$, such as $u_0 = (-1)^mpartial_1partial_2 cdots partial_m|cdot|^{-gamma} in {{mathcal S}({mathbb R}^N)}$, $0 < gamma < N$. In fact, we show global well-posedness for initial data bounded in an appropriate sense by $u_0$, for any $alpha>0$. Our approach is to study well-posedness and large time behavior on sectorial domains of the form $Omega_m = {x in {{mathbb R}^N} : x_1, cdots, x_m > 0}$, and then to extend the results by reflection to solutions on ${{mathbb R}^N}$ which are antisymmetric. We show that the large time behavior depends on the relationship between $alpha$ and $2/(gamma+m)$, and we consider all three cases, $alpha$ equal to, greater than, and less than $2/(gamma+m)$. Our results include, among others, new examples of self-similar and asymptotically self-similar solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا