Do you want to publish a course? Click here

Existence of Neumann and singular solutions of the fast diffusion equation

136   0   0.0 ( 0 )
 Added by Sunghoon Kim
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

Let $Omega$ be a smooth bounded domain in $R^n$, $nge 3$, $0<mlefrac{n-2}{n}$, $a_1,a_2,..., a_{i_0}inOmega$, $delta_0=min_{1le ile i_0}{dist }(a_i,1Omega)$ and let $Omega_{delta}=Omegasetminuscup_{i=1}^{i_0}B_{delta}(a_i)$ and $hat{Omega}=Omegasetminus{a_1,...,a_{i_0}}$. For any $0<delta<delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=Delta u^m$ in $Omega_{delta}times (0,T)$ for some $T>0$. We will prove the existence of singular solutions of this equation in $hat{Omega}times (0,T)$ for some $T>0$ that blow-up at the points $a_1,..., a_{i_0}$.



rate research

Read More

181 - Kin Ming Hui , Soojung Kim 2015
We study the asymptotic large time behavior of singular solutions of the fast diffusion equation $u_t=Delta u^m$ in $({mathbb R}^nsetminus{0})times(0,infty)$ in the subcritical case $0<m<frac{n-2}{n}$, $nge3$. Firstly, we prove the existence of singular solution $u$ of the above equation that is trapped in between self-similar solutions of the form of $t^{-alpha} f_i(t^{-beta}x)$, $i=1,2$, with initial value $u_0$ satisfying $A_1|x|^{-gamma}le u_0le A_2|x|^{-gamma}$ for some constants $A_2>A_1>0$ and $frac{2}{1-m}<gamma<frac{n-2}{m}$, where $beta:=frac{1}{2-gamma(1-m)}$, $alpha:=frac{2beta-1}{1-m},$ and the self-similar profile $f_i$ satisfies the elliptic equation $$ Delta f^m+alpha f+beta xcdot abla f=0quad mbox{in ${mathbb R}^nsetminus{0}$} $$ with $lim_{|x|to0}|x|^{frac{ alpha}{ beta}}f_i(x)=A_i$ and $lim_{|x|toinfty}|x|^{frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $frac{2}{1-m}<gamma<n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function $$ tilde u(y,tau):= t^{,alpha} u(t^{,beta} y,t),quad{ tau:=log t}, $$ converges to some self-similar profile $f$ as $tautoinfty$.
Let $OmegasubsetR^n$ be a smooth bounded domain and let $a_1,a_2,dots,a_{i_0}inOmega$, $widehat{Omega}=Omegasetminus{a_1,a_2,dots,a_{i_0}}$ and $widehat{R^n}=R^nsetminus{a_1,a_2,dots,a_{i_0}}$. We prove the existence of solution $u$ of the fast diffusion equation $u_t=Delta u^m$, $u>0$, in $widehat{Omega}times (0,infty)$ ($widehat{R^n}times (0,infty)$ respectively) which satisfies $u(x,t)toinfty$ as $xto a_i$ for any $t>0$ and $i=1,cdots,i_0$, when $0<m<frac{n-2}{n}$, $ngeq 3$, and the initial value satisfies $0le u_0in L^p_{loc}(2{Omega}setminus{a_1,cdots,a_{i_0}})$ ($u_0in L^p_{loc}(widehat{R^n})$ respectively) for some constant $p>frac{n(1-m)}{2}$ and $u_0(x)ge lambda_i|x-a_i|^{-gamma_i}$ for $xapprox a_i$ and some constants $gamma_i>frac{2}{1-m},lambda_i>0$, for all $i=1,2,dots,i_0$. We also find the blow-up rate of such solutions near the blow-up points $a_1,a_2,dots,a_{i_0}$, and obtain the asymptotic large time behaviour of such singular solutions. More precisely we prove that if $u_0gemu_0$ on $widehat{Omega}$ ($widehat{R^n}$, respectively) for some constant $mu_0>0$ and $gamma_1>frac{n-2}{m}$, then the singular solution $u$ converges locally uniformly on every compact subset of $widehat{Omega}$ (or $widehat{R^n}$ respectively) to infinity as $ttoinfty$. If $u_0gemu_0$ on $widehat{Omega}$ ($widehat{R^n}$, respectively) for some constant $mu_0>0$ and satisfies $lambda_i|x-a_i|^{-gamma_i}le u_0(x)le lambda_i|x-a_i|^{-gamma_i}$ for $xapprox a_i$ and some constants $frac{2}{1-m}<gamma_ilegamma_i<frac{n-2}{m}$, $lambda_i>0$, $lambda_i>0$, $i=1,2,dots,i_0$, we prove that $u$ converges in $C^2(K)$ for any compact subset $K$ of $2{Omega}setminus{a_1,a_2,dots,a_{i_0}}$ (or $widehat{R^n}$ respectively) to a harmonic function as $ttoinfty$.
We study extinction profiles of solutions to fast diffusion equations with some initial data in the Marcinkiewicz space. The extinction profiles will be the singular solutions of their stationary equations.
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bsubset mathbb{R}^d$, a bounded open set with locally Lipchitz boundary, and with $ u$ as the unit outer normal. The function $G$ is Lipschitz continuous and nondecreasing, while $k(x)$ is diagonal matrix. We show that any two weak entropy solutions $u$ and $v$ satisfy $Vert{u(t)-v(t)}Vert_{L^1(B)}le Vert{u|_{t=0}-v|_{t=0}}Vert_{L^1(B)}e^{Ct}$, for almost every $tge 0$, and a constant $C=C(k,G,B)$. If we restrict to the case when the entries $k_i$ of $k$ depend only on the corresponding component, $k_i=k_i(x_i)$, we show that there exists an entropy solution, thus establishing in this case that the problem is well-posed in the sense of Hadamard.
190 - Kin Ming Hui , Soojung Kim 2018
Let $ngeq 3$, $0< m<frac{n-2}{n}$ and $T>0$. We construct positive solutions to the fast diffusion equation $u_t=Delta u^m$ in $mathbb{R}^ntimes(0,T)$, which vanish at time $T$. By introducing a scaling parameter $beta$ inspired by cite{DKS}, we study the second-order asymptotics of the self-similar solutions associated with $beta$ at spatial infinity. We also investigate the asymptotic behavior of the solutions to the fast diffusion equation near the vanishing time $T$, provided that the initial value of the solution is close to the initial value of some self-similar solution and satisfies some proper decay condition at infinity. Depending on the range of the parameter $beta$, we prove that the rescaled solution converges either to a self-similar profile or to zero as $t earrow T$. The former implies asymptotic stabilization towards a self-similar solution, and the latter is a new vanishing phenomenon even for the case $nge3$ and $m=frac{n-2}{n+2},$ which corresponds to the Yamabe flow on $mathbb{R}^n$ with metric $g=u^{frac{4}{n+2}}dx^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا