Do you want to publish a course? Click here

Hessian Estimates for Lagrangian mean curvature equation

150   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we derive a priori interior Hessian estimates for Lagrangian mean curvature equation if the Lagrangian phase is supercritical and has bounded second derivatives.



rate research

Read More

In this paper, we solve the Dirichlet problem with continuous boundary data for the Lagrangian mean curvature equation on a uniformly convex, bounded domain in $mathbb{R}^n$.
We show that convex viscosity solutions of the Lagrangian mean curvature equation are regular if the Lagrangian phase has Holder continuous second derivatives.
We classify regularity for a class of Lagrangian mean curvature type equations, which includes the potential equation for prescribed Lagrangian mean curvature and those for Lagrangian mean curvature flow self-shrinkers and expanders, translating solitons, and rotating solitons. We first show that convex viscosity solutions are regular provided the Lagrangian angle or phase is $C^2$ and convex in the gradient variable. We next show that for merely Holder continuous phases, convex solutions are regular if they are $C^{1,beta}$ for sufficiently large $beta$. Singular solutions are given to show that each condition is optimal and that the Holder exponent is sharp. Along the way, we generalize the constant rank theorem of Bian and Guan to include arbitrary dependence on the Legendre transform.
172 - Giulio Ciraolo 2020
Alexandrovs soap bubble theorem asserts that spheres are the only connected closed embedded hypersurfaces in the Euclidean space with constant mean curvature. The theorem can be extended to space forms and it holds for more general functions of the principal curvatures. In this short review, we discuss quantitative stability results regarding Alexandrovs theorem which have been obtained by the author in recent years. In particular, we consider hypersurfaces having mean curvature close to a constant and we quantitatively describe the proximity to a single sphere or to a collection of tangent spheres in terms of the oscillation of the mean curvature. Moreover, we also consider the problem in a non local setting, and we show that the non local effect gives a stronger rigidity to the problem and prevents the appearance of bubbling.
Considering the second boundary value problem of the Lagrangian mean curvature equation, we obtain the existence and uniqueness of the smooth uniformly convex solution, which generalizes the Brendle-Warrens theorem about minimal Lagrangian diffeomorphism in Euclidean metric space.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا