No Arabic abstract
In this study we describe lab experiments on determining the above water reflectance Rrs coefficient, and the water attenuation coefficient Kd for fresh water. Different types of screens (totally absorbent, gray, etc.) were submerged in water (0-0.6 m) and illuminated from outside. The spectral density of the water leaving radiance was measured for different depths. The results were ran by a code which took into account the geometry of the incident irradiation, the geometry of the screen under water, and boundary conditions at the water surface provided by the radiation transfer theory. From the experimental data and our model we obtain the spectral distribution of the attenuation coefficient for fresh water and compared it with other data in literature. These experiments, performed in the Nonlinear Wave Lab at ERAU# represent just a preliminary calibration of the experimental protocol. More tests with water of different degrees of turbidity, and possibly wave filed at the water surface are in progress and will be presented in a forthcoming paper.
Molecules containing superheavy atoms can be artificially created to serve as sensitive probes for study of symmetry-violating phenomena. Here, we provide a detailed theoretical study for diatomic molecules containing the superheavy lawrencium nuclei. The sensitivity to time-reversal violating properties was studied for different neutral and ionic molecules. The effective electric fields in these systems were found to be about 3-4 times larger than other known molecules on which electron electric dipole moment experiments are being performed. Similarly, these superheavy molecules exhibit an enhancement of more than 5 times for parity- and time-reversal-violating scalar-pseudoscalar nucleus-electron interactions. We also briefly comment on some experimental aspects by discussing the production of these systems.
A Swinging Atwood Machine (SAM) is built and some experimental results concerning its dynamic behaviour are presented. Experiments clearly show that pulleys play a role in the motion of the pendulum, since they can rotate and have non-negligible radii and masses. Equations of motion must therefore take into account the inertial momentum of the pulleys, as well as the winding of the rope around them. Their influence is compared to previous studies. A preliminary discussion of the role of dissipation is included. The theoretical behaviour of the system with pulleys is illustrated numerically, and the relevance of different parameters is highlighted. Finally, the integrability of the dynamic system is studied, the main result being that the Machine with pulleys is non-integrable. The status of the results on integrability of the pulley-less Machine is also recalled.
Multiple scattering from artificial random irregularities HF-induced in the ionosphere F region causes significant attenuation of both ordinary and extraordinary radio waves together with the conventional anomalous absorption of ordinary waves due to their conversion into the plasma waves. To study in detail features of this effect, purposeful measurements of the attenuation of weak probing waves of the extraordinary polarization have been performed at the Sura heating facility. Characteristic scale lengths of the involved irregularities are ~0.1-1 km across the geomagnetic field lines. To determine the spectral characteristics of these irregularities from the extraordinary probing wave attenuation measurements, a simple procedure of the inverse problem solving has been implemented and some conclusions about the artificial irregularity features have been drawn. Theory and details of experiments have been stated earlier. This paper reports results of two experimental campaigns carried out in August 2000 and June 2001 under support of Russian Foundation for Basic Research (grants No. 99-02-17525 and No. 01-02-31008). Particularity of these experiments consisted in using of lower heating power (20-80 MW ERP). Regular character of the multiple scattering effects has been confirmed.
X-ray diffraction (XRD) and Mossbauer spectroscopy techniques combined with theoretical calculations based on the Korringa-Kohn-Rostoker (KKR) electronic structure calculation method were used to investigate sigma-phase Fe_{100-x}Re_{x} alloys (x = 43, 45, 47, 49 and 53). Structural data such as site occupancies and lattice constants were derived from the XRD patters, while the average isomer shift and distribution curves of the quadrupole splitting were obtained from the Mossbauer spectra. Fe-site charge-densities and the quadrupole splittings were computed with the KKR method for each lattice site. The calculated quantities combined with the experimentally determined site occupancies were successfully used to decompose the measured Mossbauer spectra into five components corresponding to the five sublattices.
We have theoretically and experimentally address the possible tandem electro-optical modulator configurations that can be employed to implement Frequency Coded Quantum Key Distribution systems (FC-QKD). A closed and general formulation of the end to end field propagation in a dispersion compensated FC-QKD optical fiber system under the low modulation index regime is presented which accounts for all the possible tandem combinations. The properties and the parameter selection of the modulators to achieve each one are summarized. We also address which protocol (B92, BB84 or either) is feasible to be implemented with each configuration. The results confirm those reported for the configurations previously reported in the literature and, at the same time, show the existence of four novel tandem modulator configurations that can also be employed. We have also provided experimental evidence of the successful operation of the novel configurations that confirm the behavior predicted by the theoretical results.