Do you want to publish a course? Click here

Anomalous attenuation of extraordinary waves in ionosphere heating experiments: experimental results of 2000-2001

44   0   0.0 ( 0 )
 Added by Nikolay A. Zabotin
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiple scattering from artificial random irregularities HF-induced in the ionosphere F region causes significant attenuation of both ordinary and extraordinary radio waves together with the conventional anomalous absorption of ordinary waves due to their conversion into the plasma waves. To study in detail features of this effect, purposeful measurements of the attenuation of weak probing waves of the extraordinary polarization have been performed at the Sura heating facility. Characteristic scale lengths of the involved irregularities are ~0.1-1 km across the geomagnetic field lines. To determine the spectral characteristics of these irregularities from the extraordinary probing wave attenuation measurements, a simple procedure of the inverse problem solving has been implemented and some conclusions about the artificial irregularity features have been drawn. Theory and details of experiments have been stated earlier. This paper reports results of two experimental campaigns carried out in August 2000 and June 2001 under support of Russian Foundation for Basic Research (grants No. 99-02-17525 and No. 01-02-31008). Particularity of these experiments consisted in using of lower heating power (20-80 MW ERP). Regular character of the multiple scattering effects has been confirmed.



rate research

Read More

The problem of tsunami wave run-up on a beach is discussed in the framework of the rigorous solutions of the nonlinear shallow-water theory. We present an analysis of the run-up characteristics for various shapes of the incoming symmetrical solitary tsunami waves. It will be demonstrated that the extreme (maximal) wave characteristics on a beach (run-up and draw-down heights, run-up and draw-down velocities and breaking parameter) are weakly dependent on the shape of incident wave if the definition of the significant wave length determined on the 2/3 level of the maximum height is used. The universal analytical expressions for the extreme wave characteristics are derived for the run-up of the solitary pulses. They can be directly applicable for tsunami warning because in many case the shape of the incident tsunami wave is unknown.
207 - A. Simpson , A. Ludu , H. J. Cho 2014
In this study we describe lab experiments on determining the above water reflectance Rrs coefficient, and the water attenuation coefficient Kd for fresh water. Different types of screens (totally absorbent, gray, etc.) were submerged in water (0-0.6 m) and illuminated from outside. The spectral density of the water leaving radiance was measured for different depths. The results were ran by a code which took into account the geometry of the incident irradiation, the geometry of the screen under water, and boundary conditions at the water surface provided by the radiation transfer theory. From the experimental data and our model we obtain the spectral distribution of the attenuation coefficient for fresh water and compared it with other data in literature. These experiments, performed in the Nonlinear Wave Lab at ERAU# represent just a preliminary calibration of the experimental protocol. More tests with water of different degrees of turbidity, and possibly wave filed at the water surface are in progress and will be presented in a forthcoming paper.
This study investigated an approach to improve the accuracy of computationally lightweight surrogate models by updating forecasts based on historical accuracy relative to sparse observation data. Using a lightweight, ocean-wave forecasting model, we created a large number of model ensembles, with perturbed inputs, for a two-year study period. Forecasts were aggregated using a machine-learning algorithm that combined forecasts from multiple, independent models into a single best-estimate prediction of the true state. The framework was applied to a case-study site in Monterey Bay, California. A~learning-aggregation technique used historical observations and model forecasts to calculate a weight for each ensemble member. Weighted ensemble predictions were compared to measured wave conditions to evaluate performance against present state-of-the-art. Finally, we discussed how this framework, which integrates ensemble aggregations and surrogate models, can be used to improve forecasting systems and further enable scientific process studies.
The generation of a tsunami wave by an aerial landslide is investigated through model laboratory experiments. We examine the collapse of an initially dry column of grains into a shallow water layer and the subsequent generation of waves. The experiments show that the collective entry of the granular material into water governs the wave generation process. We observe that the amplitude of the wave relative to the water height scales linearly with the Froude number based on the horizontal velocity of the moving granular front relative to the wave velocity. For all the different parameters considered here, the aspect ratio and the volume of the column, the diameter and density of the grains, and the height of the water, the granular collapse acts like a moving piston displacing the water. We also highlight that the density of the falling grains has a negligible influence on the wave amplitude, which suggests that the volume of grains entering the water is the relevant parameter in the wave generation.
68 - Pascal Marquet 2019
This article describes the third law of thermodynamics. This law is often poorly known and is often decried, or even considered optional and irrelevant to describe weather and climate phenomena. This, however, is inaccurate and contrary to scientific facts. A rather exhaustive historical study is proposed here in order to better understand, in another article to come, why the third principle can be interesting for the atmosphere sciences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا