Molecules containing superheavy atoms can be artificially created to serve as sensitive probes for study of symmetry-violating phenomena. Here, we provide a detailed theoretical study for diatomic molecules containing the superheavy lawrencium nuclei. The sensitivity to time-reversal violating properties was studied for different neutral and ionic molecules. The effective electric fields in these systems were found to be about 3-4 times larger than other known molecules on which electron electric dipole moment experiments are being performed. Similarly, these superheavy molecules exhibit an enhancement of more than 5 times for parity- and time-reversal-violating scalar-pseudoscalar nucleus-electron interactions. We also briefly comment on some experimental aspects by discussing the production of these systems.
We present the current status of experimental results and prospects for the determination of CP and T violation in the charm sector. Such measurements have acquired renewed interest in recent years in view of theoretical work, which has highlighted the possibility to probe experimental signatures from New Physics beyond the Standard Model, since the effect of CP violation due to Standard Model processes is expected to be highly suppressed in D decays. The current limits of experimental sensitivities for these studies are reaching the interesting theoretical regimes. We include new measurements from the Belle, BABAR, and CLEO-c collaborations.
The experimental characterization of scattering resonances in low energy collisions has proven to be a stringent test for quantum chemistry calculations. Previous measurements on the NO-H$_2$ system at energies down to $10$ cm$^{-1}$ challenged the most sophisticated calculations of potential energy surfaces available. In this report, we continue these investigations by measuring the scattering behavior of the NO-H$_2$ system in the previously unexplored $0.4 - 10$ cm$^{-1}$ region for the parity changing de-excitation channel of NO. We study state-specific inelastic collisions with both textit{para}- and textit{ortho}-H$_2$ in a crossed molecular beam experiment involving Stark deceleration and velocity map imaging. We are able to resolve resonance features in the measured integral and differential cross sections. Results are compared to predictions from two previously available potential energy surfaces and we are able to clearly discriminate between the two potentials. We furthermore identify the partial wave contributions to these resonances, and investigate the nature of the differences between collisions with textit{para}- and textit{ortho}-H$_2$. Additionally, we tune the energy spreads in the experiment to our advantage to probe scattering behavior at energies beyond our mean experimental limit.
At ultralow energies, atoms and molecules undergo collisions and reactions that are best described in terms of quantum mechanical wave functions. In contrast, at higher energies these processes can be understood quasiclassically. Here, we investigate the crossover from the quantum mechanical to the quasiclassical regime both experimentally and theoretically for photodissociation of ultracold diatomic strontium molecules. This basic reaction is carried out with a full control of quantum states for the molecules and their photofragments. The photofragment angular distributions are imaged, and calculated using a quantum mechanical model as well as the WKB and a semiclassical approximation that are explicitly compared across a range of photofragment energies. The reaction process is shown to converge to its high-energy (axial recoil) limit when the energy exceeds the height of any reaction barriers. This phenomenon is quantitatively investigated for two-channel photodissociation using intuitive parameters for the channel amplitude and phase. While the axial recoil limit is generally found to be well described by a commonly used quasiclassical model, we find that when the photofragments are identical particles, their bosonic or fermionic quantum statistics can cause this model to fail, requiring a quantum mechanical treatment even at high energies.
Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take this challenge up, a consortium of physicists, chemists, theoreticians and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal, the progress accomplished in the diverse areas, and point out directions for future PV observations. The work of Andre Collet on bromochlorofluoromethane enantiomers, their synthesis and their chiral recognition by cryptophanes made feasible the first generation of experiments presented in this paper.
We study leptonic CP violation from a new perspective. For Majorana neutrinos, a new parametrization for leptonic mixing of the form $V=O_{23} O_{12} K_{a}^{i}cdot O$ reveals interesting aspects that are less clear in the standard parametrization. We identify several important scenario-cases with mixing angles in agreement with experiment and leading to large leptonic CP violation. If neutrinos happen to be quasi-degenerate, this new parametrization might be very useful, e.g., in reducing the number of relevant parameters of models.
R. Mitra
,V. S. Prasannaa
,R. F. Garcia Ruiz
.
(2021)
.
"Towards CP Violation Studies on Superheavy Molecules: Theoretical and Experimental Perspective"
.
Srinivasa Prasannaa V
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا