Do you want to publish a course? Click here

Error analysis of moment-based modal wavefront sensing

340   0   0.0 ( 0 )
 Added by Hanshin Lee
 Publication date 2014
  fields Physics
and research's language is English
 Authors Hanshin Lee




Ask ChatGPT about the research

The shape of a focus-modulated point spread function (PSF) is used as a quick visual assessment tool of aberration modes in the PSF. Further analysis in terms of shape moments can permit quantifying the modal coefficients with an accuracy comparable to that of typical wavefront sensors. In this letter, the error of the moment-based wavefront sensing is analytically described in terms of the pixelation and photon/readout noise. All components highly depend on the (unknown) PSF shape, but can be estimated from the measured PSF sampled at a reasonable spatial resolution and photon count. Numerical simulations verified that the models consistently predicted the behavior of the modal estimation error of the moment-based wavefront sensing.



rate research

Read More

Due to the limited number of photons, directly imaging planets requires long integration times with a coronagraphic instrument. The wavefront must be stable on the same time scale, which is often difficult in space due to thermal variations and other mechanical instabilities. In this paper, we discuss the implications on future space mission observing conditions of our recent laboratory demonstration of a dark zone maintenance (DZM) algorithm. The experiments are performed on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute (STScI). The testbed contains a segmented aperture, a pair of continuous deformable mirrors (DMs), and a lyot coronagraph. The segmented aperture injects high order wavefront aberration drifts into the system which are then corrected by the DMs downstream via the DZM algorithm. We investigate various drift modes including segmented aperture drift, all three DMs drift simultaneously, and drift correction at multiple wavelengths.
269 - Hanshin Lee 2012
A new concept of using focus-diverse point spread functions (PSFs) for modal wavefront sensing (WFS) is explored. This is based on relatively straightforward image moment analysis of measured PSFs, which differentiates it from other focal-plane wavefront sensing techniques (FPWFS). The presented geometric analysis shows that the image moments are non-linear functions of wave aberration coefficients, but notes that focus-diversity (FD) essentially decouples the coefficients of interest from others, resulting in a set of linear equations whose solution corresponds to modal coefficient estimates. The presented proof-of-concept simulations suggest the potential of the concept in WFS with strongly aberrated high SNR objects in particular.
We describe the concept of splitting spatial frequency perturbations into some kind of pupil planes wavefront sensors. Further to the existing approach of dropping higher spatial frequency to suppress aliasing effects (the so-called spatial filtered Shack-Hartmann), we point out that spatial frequencies splitting and mixing of these in a proper manner, could be handled in order to exhibit some practical or fundamental advantages. In this framework we describe the idea behind such class of concepts and we derive the relationship useful to determine if, by which extent, and under what kind of merit function, these devices can overperform existing conventional sensors.
136 - Alastair Basden 2015
We investigate the improvements in Shack-Hartmann wavefront sensor image processing that can be realised using total variation minimisation techniques to remove noise from these images. We perform Monte-Carlo simulation to demonstrate that at certain signal-to-noise levels, sensitivity improvements of up to one astronomical magnitude can be realised. We also present on-sky measurements taken with the CANARY adaptive optics system that demonstrate an improvement in performance when this technique is employed, and show that this algorithm can be implemented in a real-time control system. We conclude that total variation minimisation can lead to improvements in sensitivity of up to one astronomical magnitude when used with adaptive optics systems.
Dark wavefront sensing takes shape following quantum mechanics concepts in which one is able to see an object in one path of a two-arm interferometer using an as low as desired amount of light actually hitting the occulting object. A theoretical way to achieve such a goal, but in the realm of wavefront sensing, is represented by a combination of two unequal beams interferometer sharing the same incoming light, and whose difference in path length is continuously adjusted in order to show different signals for different signs of the incoming perturbation. Furthermore, in order to obtain this in white light, the path difference should be properly adjusted vs the wavelength used. While we incidentally describe how this could be achieved in a true optomechanical setup, we focus our attention to the simulation of a hypothetical perfect dark wavefront sensor of this kind in which white light compensation is accomplished in a perfect manner and the gain is selectable in a numerical fashion. Although this would represent a sort of idealized dark wavefront sensor that would probably be hard to match in the real glass and metal, it would also give a firm indication of the maximum achievable gain or, in other words, of the prize for achieving such device. Details of how the simulation code works and first numerical results are outlined along with the perspective for an in-depth analysis of the performances and its extension to more realistic situations, including various sources of additional noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا