No Arabic abstract
Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiations push balances gravitys pull. However, even exponential growth at the Eddington-limited e-folding time t_E ~ few x 0.01 billion years, is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is trapped in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BHs random motions suppress the formation of a slowly-draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.
Seed black holes formed in the collapse of population III stars have been invoked to explain the presence of supermassive black holes at high redshift. It has been suggested that a seed black hole can grow up to $10^{5sim 6}sunm$ through highly super-Eddington accretion for a period of $sim 10^{6sim 7}$ yr between redshift $z=20sim 24$. We studied the feedback of radiation pressure, Compton heating and outflow during the seed black hole growth. It is found that its surrounding medium fueled to the seed hole is greatly heated by Compton heating. For a super-critical accretion onto a $10^3sunm$ seed hole, a Compton sphere (with a temperature $sim 10^6$K) forms in a timescale of $1.6times 10^3$yr so that the hole is only supplied by a rate of $10^{-3}$ Eddington limit from the Compton sphere. Beyond the Compton sphere, the kinetic feedback of the strong outflow heats the medium at large distance, this leads to a dramatical decrease of the outer Bondi accretion onto the black hole and avoid the accumulation of the matter. The highly super-critical accretion will be rapidly halted by the strong feedback. The seed black holes hardly grow up at the very early universe unless the strong feedback can be avoided.
We investigate the rapid growth phase of supermassive black holes (BHs) within the hydrodynamical cosmological eagle simulation. This non-linear phase of BH growth occurs within $sim$$L_{*}$ galaxies, embedded between two regulatory states of the galaxy host: in sub $L_{*}$ galaxies efficient stellar feedback regulates the gas inflow onto the galaxy and significantly reduces the growth of the central BH, while in galaxies more massive than $L_{*}$ efficient AGN feedback regulates the gas inflow onto the galaxy and curbs further non-linear BH growth. We find evolving critical galaxy and halo mass scales at which rapid BH growth begins. Galaxies in the low-redshift Universe transition into the rapid BH growth phase in haloes that are approximately an order of magnitude more massive than their high-redshift counterparts (M{200} $approx 10^{12.4}$~Msol at $z approx 0$ decreasing to M{200} $approx 10^{11.2}$~Msol at $z approx 6$). Instead, BHs enter the rapid growth phase at a fixed critical halo virial temperature ($T_{mathrm{vir}} approx 10^{5.6}$~K). We additionally show that major galaxy--galaxy interactions ($mu geq frac{1}{4}$, where $mu$ is the stellar mass ratio) play a substantial role in triggering the rapid growth phase of BHs in the low-redshift Universe, whilst potentially having a lower influence at high redshift. Approximately 40% of BHs that initiate the rapid BH growth phase at $z approx 0$ do so within $pm 0.5$ dynamical times of a major galaxy--galaxy merger, a fourfold increase above what is expected from the background merger rate. We find that minor mergers ($frac{1}{10} leq mu < frac{1}{4}$) have a substantially lower influence in triggering the rapid growth phase at all epochs.
Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (10^4 - 10^5 solar mass) objects. Our calculations demonstrate that the interplay between stellar dynamics, gas accretion and protostellar evolution is particularly relevant. Gas accretion onto the protostars enhances their radii, resulting in an enhanced collisional cross section. We show that the fraction of collisions can increase from 0.1-1% of the initial population to about 10% when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
Hyperaccretion occurs when the gas inflow rate onto a black hole (BH) is so high that the radiative feedback cannot reverse the accretion flow. This extreme process is a promising mechanism for the rapid growth of seed BHs in the early universe, which can explain high-redshift quasars powered by billion solar mass BHs. In theoretical models, spherical symmetry is commonly adopted for hyperaccretion flows; however, the sustainability of such structures on timescales corresponding to the BH growth has not been addressed yet. Here we show that stochastic interactions between the ionizing radiation from the BH and nonuniform accretion flow can lead to the formation of a rotating gas disk around the BH. Once the disk forms, the supply of gas to the BH preferentially occurs via biconical-dominated accretion flow perpendicular to the disk, avoiding the centrifugal barrier of the disk. Biconical-dominated accretion flows from opposite directions collide in the vicinity of the BH supplying high-density, low angular momentum gas to the BH, whereas most of the gas with nonnegligible angular momentum is deflected to the rotationally supported outflowing decretion disk. The disk becomes reinforced progressively as more mass from the biconical flow transfers to the disk and some of the outflowing gas from the disk is redirected to the biconical accretion funnels through a meridional structure. This axisymmetric hydrodynamic structure of a biconical-dominated accretion flow and decretion disk continues to provide uninterrupted flow of high-density gas to the BH.
In many galactic nuclei, a nuclear stellar cluster (NSC) co-exists with a supermassive black hole (SMBH). In this work, we explore the idea that the NSC forms before the SMBH through the merger of several stellar clusters that may contain intermediate-mass black holes (IMBHs). These IMBHs can subsequently grow by mergers and accretion to form an SMBH. To check the observable consequences of this proposed SMBH seeding mechanism, we created an observationally motivated mock population of galaxies, in which NSCs are constructed by aggregating stellar clusters that may or may not contain IMBHs. We model the growth of IMBHs in the NSCs through gravitational wave (GW) mergers with other IMBHs and gas accretion. In the case of GW mergers, the merged BH can either be retained or ejected depending on the GW recoil kick it receives. The likelihood of retaining the merged BH increases if we consider growth of IMBHs in the NSC through gas accretion. We find that nucleated lower-mass galaxies ($rm M_{star} lesssim 10^{9} M_{odot}$; e.g. M33) have an SMBH seed occupation fraction of about 0.3 to 0.5. This occupation fraction increases with galaxy stellar mass and for more massive galaxies ($rm 10^{9} M_{odot} lesssim rm M_{star} lesssim 10^{11} M_{odot}$), it is between 0.5 and 0.8, depending on how BH growth is modelled. These occupation fractions are consistent with observational constraints. Furthermore, allowing for BH growth also allows us to reproduce the observed diversity in the mass range of SMBHs in the $rm M_{rm NSC} - M_{rm BH}$ plane.