No Arabic abstract
Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (10^4 - 10^5 solar mass) objects. Our calculations demonstrate that the interplay between stellar dynamics, gas accretion and protostellar evolution is particularly relevant. Gas accretion onto the protostars enhances their radii, resulting in an enhanced collisional cross section. We show that the fraction of collisions can increase from 0.1-1% of the initial population to about 10% when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
To explain the observed population of supermassive black holes at z~7, very massive seed black holes or, alternatively, super-Eddington scenarios are needed to reach final masses of the order of 10^9 solar masses. A popular explanation for massive seeds has been the direct collapse model, which predicts the formation of a single massive object due to the direct collapse of a massive gas cloud. Simulations over the last years have however shown that such a scenario is very difficult to achieve. A realistic model of black hole formation should therefore take fragmentation into account, and consider the interaction between stellar-dynamical and gas-dynamical processes. We present here numerical simulations pursued with the AMUSE code, employing an approximate treatment of the gas. Based on these simulations, we show that very massive black holes of 10^4-10^5 solar masses may form depending on the gas supply and the accretion onto the protostars.
Super-Eddington accretion onto massive black hole seeds may be commonplace in the early Universe, where the conditions exist for rapid accretion. Direct collapse black holes are often invoked as a possible solution to the observation of super massive black holes (SMBHs) in the pre-reionisation Universe. We investigate here how feedback, mainly in the form of bipolar jets, from super-Eddington accreting seed black holes will affect their subsequent growth. We find that, nearly independent of the mass loading of the bipolar jets, the violent outflows generated by the jets evacuate a region of approximately 0.1 pc surrounding the black hole seed. However, the jet outflows are unable to break free of the halo and their impact is limited to the immediate vicinity of the black hole. The outflows suppress any accretion for approximately a dynamical time. The gas then cools, recombines and falls back to the centre where high accretion rates are again observed. The overall effect is to create an effective accretion rate with values of between 0.1 and 0.5 times the Eddington rate. If this episodic accretion rate is maintained for order 500 million years then the black hole will increase in mass by a factor of between 3 and 300 but far short of the factor of $10^4$ required for the seeds to become the SMBHs observed at $z>6$. Therefore, direct collapse black holes born into atomic cooling haloes and which experience strong negative mechanical feedback will require external influences (e.g. rapid major mergers with other haloes) to promote efficient accretion and reach SMBH masses within a few hundred million years.
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different discs surface densities which alter the black holes dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Initially circular black hole binaries increase only slightly their eccentricity which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black holes dynamics under accretion only explores the late evolution stages of the binary in an otherwise unperturbed retrograde disc to illustrate how eccentricity evolves with time in relation to the shape of the underlying surface density distribution.
The presence of massive black holes (BHs) with masses of order $10^9rm, M_odot$, powering bright quasars when the Universe was less than 1 Gyr old, poses strong constraints on their formation mechanism. Several scenarios have been proposed to date to explain massive BH formation, from the low-mass seed BH remnants of the first generation of stars to the massive seed BHs resulting from the rapid collapse of massive gas clouds. However, the plausibility of some of these scenarios to occur within the progenitors of high-z quasars has not yet been thoroughly explored. In this work, we investigate, by combining dark-matter only N-body simulations with a semi-analytic framework, whether the conditions for the formation of massive seed BHs from synchronised atomic-cooling halo pairs and/or dynamically-heated mini-haloes are fulfilled in the overdense regions where the progenitors of a typical high-redshift quasar host form and evolve. Our analysis shows that the peculiar conditions in such regions, i.e. strong halo clustering and high star formation rates, are crucial to produce a non-negligible number of massive seed BH host candidates: we find $approx1400$ dynamically heated metal-free mini-haloes, including one of these which evolves to a synchronised pair and ends up in the massive quasar-host halo by $z=6$. This demonstrates that the progenitors of high-redshift quasar host haloes can harbour early massive seed BHs. Our results further suggest that multiple massive seed BHs may form in or near the quasar hosts progenitors, potentially merging at lower redshifts and yielding gravitational wave events.
The rapid assembly of the massive black holes that power the luminous quasars observed at $z sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $sim 10^5,rm M_odot$, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the slim disc solution can increase its mass by 3 orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of super-critical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.