Do you want to publish a course? Click here

A one-dimensional liquid of fermions with tunable spin

239   0   0.0 ( 0 )
 Added by Leonardo Fallani
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Correlations in systems with spin degree of freedom are at the heart of fundamental phenomena, ranging from magnetism to superconductivity. The effects of correlations depend strongly on dimensionality, a striking example being one-dimensional (1D) electronic systems, extensively studied theoretically over the past fifty years. However, the experimental investigation of the role of spin multiplicity in 1D fermions - and especially for more than two spin components - is still lacking. Here we report on the realization of 1D, strongly-correlated liquids of ultracold fermions interacting repulsively within SU(N) symmetry, with a tunable number N of spin components. We observe that static and dynamic properties of the system deviate from those of ideal fermions and, for N>2, from those of a spin-1/2 Luttinger liquid. In the large-N limit, the system exhibits properties of a bosonic spinless liquid. Our results provide a testing ground for many-body theories and may lead to the observation of fundamental 1D effects.



rate research

Read More

At low temperature, collective excitations of one-dimensional (1D) interacting fermions exhibit spin-charge separation, a unique feature predicted by the Tomonaga-Luttinger liquid (TLL) theory, but a rigorous understanding remains challenging. Using the thermodynamic Bethe Ansatz (TBA) formalism, we analytically derive universal properties of a 1D repulsive spin-1/2 Fermi gas with arbitrary interaction strength. We show how spin-charge separation emerges from the exact TBA formalism, and how it is disrupted by the interplay between the two degrees of freedom which brings us beyond the TLL paradigm. Based on the exact low-lying excitation spectra, we further evaluate the spin and charge dynamical structure factors (DSFs). The peaks of the DSFs exhibit distinguishable propagating velocities of spin and charge as functions of interaction strength, which can be observed by Bragg spectroscopy with ultracold atoms.
We study a model of two species of one-dimensional linearly dispersing fermions interacting via an s-wave Feshbach resonance at zero temperature. While this model is known to be integrable, it possesses novel features that have not previously been investigated. Here, we present an exact solution based on the coordinate Bethe Ansatz. In the limit of infinite resonance strength, which we term the strongly interacting limit, the two species of fermions behave as free Fermi gases. In the limit of infinitely weak resonance, or the weakly interacting limit, the gases can be in different phases depending on the detuning, the relative velocities of the particles, and the particle densities. When the molecule moves faster or slower than both species of atoms, the atomic velocities get renormalized and the atoms may even become non-chiral. On the other hand, when the molecular velocity is between that of the atoms, the system may behave like a weakly interacting Lieb-Liniger gas.
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.
Strongly interacting one-dimensional fermions form an effective spin chain in the absence of an external lattice potential. We show that the exchange coefficients of such a chain may be locally tuned by properly tailoring the transversal confinement. In particular, in the vicinity of a confinement-induced resonance (CIR) the exchange coefficients may have simultaneously opposite ferromagnetic and antiferromagnetic characters at different locations along the trap axis. Moreover, the local exchanges may be engineered to induce avoided crossings between spin states at the CIR, and hence a ramp across the resonance may be employed to create different spin states and to induce spin dynamics in the chain. We show that such unusual spin chains have already been realized in the experiment of Murmann et al. [Phys. Rev. Lett. 115, 215301 (2015)].
202 - Xia-Ji Liu , P. D. Drummond 2013
Majorana fermions are promising candidates for storing and processing information in topological quantum computation. The ability to control such individual information carriers in trapped ultracold atomic Fermi gases is a novel theme in quantum information science. However, fermionic atoms are neutral and thus are difficult to manipulate. Here, we theoretically investigate the control of emergent Majorana fermions in one-dimensional spin-orbit coupled atomic Fermi gases. We discuss (i) how to move Majorana fermions by increasing or decreasing an effective Zeeman field, which acts like a solid state control voltage gate; and (ii) how to create a pair of Majorana fermions by adding a magnetic impurity potential. We discuss the experimental realization of our control scheme in an ultracold Fermi gas of $^{40}$K atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا