No Arabic abstract
Strongly interacting one-dimensional fermions form an effective spin chain in the absence of an external lattice potential. We show that the exchange coefficients of such a chain may be locally tuned by properly tailoring the transversal confinement. In particular, in the vicinity of a confinement-induced resonance (CIR) the exchange coefficients may have simultaneously opposite ferromagnetic and antiferromagnetic characters at different locations along the trap axis. Moreover, the local exchanges may be engineered to induce avoided crossings between spin states at the CIR, and hence a ramp across the resonance may be employed to create different spin states and to induce spin dynamics in the chain. We show that such unusual spin chains have already been realized in the experiment of Murmann et al. [Phys. Rev. Lett. 115, 215301 (2015)].
We present a general form of the effective spin-chain model for strongly interacting atomic gases with an arbitrary spin in the one-dimensional(1D) traps. In particular, for high-spin systems the atoms can collide in multiple scattering channels, and we find that the resulted form of spin-chain model generically follows the same structure as that of the interaction potentials. This is a unified form working for any spin, statistics (Bose or Fermi) and confinement potentials. We adopt the spin-chain model to reveal both the ferromagnetic(FM) and anti-ferromagnetic(AFM) magnetic orders for strongly interacting spin-1 bosons in 1D traps. We further show that by adding the spin-orbit coupling, the FM/AFM orders can be gradually destroyed and eventually the ground state exhibits universal spin structure and contacts that are independent of the strength of spin-orbit coupling.
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We find that bosonic atoms offer more flexibility for tuning independently the parameters of the spin Hamiltonian through interatomic (intra-species) interaction which is absent for fermions due to the Pauli exclusion principle. Our formalism can have important implications for control and manipulation of the dynamics of few- and many-body quantum systems; as an illustrative example relevant to quantum computation and communication, we consider state transfer in the simplest non-trivial system of four particles representing exchange-coupled qubits.
To test effective Hamiltonians for strongly interacting fermions in an optical lattice, we numerically find the energy spectrum for two fermions interacting across a Feshbach resonance in a double well potential. From the spectrum, we determine the range of detunings for which the system can be described by an effective lattice model, and how the model parameters are related to the experimental parameters. We find that for a range of strong interactions the system is well described by an effective $t-J$ model, and the effective superexchange term, $J$, can be smoothly tuned through zero on either side of unitarity. Right at and around unitarity, an effective one-band general Hubbard model is appropriate, with a finite and small on-site energy, due to a lattice-induced anharmonic coupling between atoms at the scattering threshold and a weakly bound Feshbach molecule in an excited center of mass state.
We analyze a system of two-component fermions which interact via a Feshbach resonance in the presence of a three-dimensional lattice potential. By expressing a two-channel model of the resonance in the basis of Bloch states appropriate for the lattice, we derive an eigenvalue equation for the two-particle bound states which is nonlinear in the energy eigenvalue. Compact expressions for the interchannel matrix elements, numerical methods for the solution of the nonlinear eigenvalue problem, and a renormalization procedure to remove ultraviolet divergences are presented. From the structure of the two-body solutions we identify the relevant degrees of freedom which describe the resonance behavior in the lowest Bloch band. These degrees of freedom, which we call dressed molecules, form an effective closed channel in a many-body model of the resonance, the Fermi resonance Hamiltonian (FRH). It is shown how the properties of the FRH can be determined numerically by solving a projected lattice two-channel model at the two-particle level. As opposed to single-channel lattice models such as the Hubbard model, the FRH is valid for general s-wave scattering length and resonance width. Hence, the FRH provides an accurate description of the BEC-BCS crossover for ultracold fermions on an optical lattice.
Correlations in systems with spin degree of freedom are at the heart of fundamental phenomena, ranging from magnetism to superconductivity. The effects of correlations depend strongly on dimensionality, a striking example being one-dimensional (1D) electronic systems, extensively studied theoretically over the past fifty years. However, the experimental investigation of the role of spin multiplicity in 1D fermions - and especially for more than two spin components - is still lacking. Here we report on the realization of 1D, strongly-correlated liquids of ultracold fermions interacting repulsively within SU(N) symmetry, with a tunable number N of spin components. We observe that static and dynamic properties of the system deviate from those of ideal fermions and, for N>2, from those of a spin-1/2 Luttinger liquid. In the large-N limit, the system exhibits properties of a bosonic spinless liquid. Our results provide a testing ground for many-body theories and may lead to the observation of fundamental 1D effects.