No Arabic abstract
We study the dynamical behaviour of ultracold fermionic atoms loaded into an optical lattice under the presence of an effective magnetic flux, induced by spin-orbit coupled laser driving. At half filling, the resulting system can emulate a variety of iconic spin-1/2 models such as an Ising model, an XY model, a generic XXZ model with arbitrary anisotropy, or a collective one-axis twisting model. The validity of these different spin models is examined across the parameter space of flux and driving strength. In addition, there is a parameter regime where the system exhibits chiral, persistent features in the long-time dynamics. We explore these properties and discuss the role played by the systems symmetries. We also discuss experimentally-viable implementations.
Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field. SOC tunability is explicitly demonstrated by adopting a mean-field tight-binding model for the BEC mixture and by performing an averaging approach in the strong modulation limit. In this case, the system can be reduced to an unmodulated vector discrete nonlinear Schrodinger equation with a rescaled SOC tunning parameter $alpha$, which depends only on the ratio between amplitude and frequency of the applied Zeeman field. The dependence of the spectrum of the linear system on $alpha$ has been analytically characterized. In particular, we show that extremal curves (ground and highest excited states) of the linear spectrum are continuous piecewise functions (together with their derivatives) of $alpha$, which consist of a finite number of decreasing band lobes joined by constant lines. This structure also remains in presence of not too large nonlinearities. Most important, the interactions introduce a number of localized states in the band-gaps that undergo change of properties as they collide with band lobes. The stability of ground states in the presence of the modulating field has been demonstrated by real time evolutions of the original (un-averaged) system. Localization properties of the ground state induced by the SOC tuning, and a parameter design for possible experimental observation have also been discussed.
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects, motivating research into potential alternatives. Here we demonstrate that SOC can be engineered to occur naturally in a one-dimensional fermionic 87Sr optical lattice clock (OLC). In contrast to previous SOC experiments, in this work the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states. We use clock spectroscopy to prepare lattice band populations, internal electronic states, and quasimomenta, as well as to produce SOC dynamics. The exceptionally long lifetime of the excited clock state (160 s) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and Van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases of matter.
In this paper, we show that for sufficiently strong atomic interactions, there exist analytical solutions of current-carrying nonlinear Bloch states at the Brillouin zone edge to the model of spin-orbit-coupled Bose-Einstein condensates (BECs) with symmetric spin interaction loaded into optical lattices. These simple but generic exact solutions provide an analytical demonstration of some intriguing properties which have neither an analog in the regular BEC lattice systems nor in the uniform spin-orbit-coupled BEC systems. It is an analytical example for understanding the superfluid and other related properties of the spin-orbit-coupled BEC lattice systems.
Ultracold atoms in optical lattices offer a great promise to generate entangled states for scalable quantum information processing owing to the inherited long coherence time and controllability over a large number of particles. We report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Employing a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated by microwave pulses with near unitary fidelities. Spin entanglement of the two atoms in the double wells of the superlattice is generated via dynamical evolution governed by spin superexchange. By observing collisional atom loss with in-situ absorption imaging we measure spin correlations of atoms inside the double wells and obtain the lower boundary of entanglement fidelity as $0.79pm0.06$, and the violation of a Bells inequality with $S=2.21pm 0.08$. The above results represent an essential step towards scalable quantum computation with ultracold atoms in optical lattices.
Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explored for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport.