Do you want to publish a course? Click here

Spatial patterns of dissipative polariton solitons in semiconductor microcavities

160   0   0.0 ( 0 )
 Added by Maksym Sich
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Semiconductor microcavities operating in the polaritonic regime are highly non-linear, high speed systems due to the unique half-light, half-matter nature of polaritons. Here, we report for the first time the observation of propagating multi-soliton polariton patterns consisting of multi-peak structures either along (x) or perpendicular to (y) the direction of propagation. Soliton arrays of up to 5 solitons are observed, with the number of solitons controlled by the size or power of the triggering laser pulse. The break-up along the x direction occurs due to interplay of bistability, negative effective mass and polariton-polariton scattering, while in the y direction the break-up results from nonlinear phase-dependent interactions of propagating fronts. We show the experimental results are in good agreement with numerical modelling. Our observations are a step towards ultrafast all-optical signal processing using sequences of solitons as bits of information.



rate research

Read More

Exciton-polariton solitons are strongly nonlinear quasiparticles composed of coupled exciton-photon states due to the interaction of light with matter. In semiconductor microcavity systems such as semiconductor micro and nanowires, polaritons are characterized by a negative mass which when combined with the repulsive nonlinear exciton-exciton interaction, leads to the generation of bright polariton solitons. In this work we investigate the dynamics of bright exciton-polariton solitons in a finite-size microcavity waveguide, for which radiative losses are assumed balanced by the external pumping. An exact bright-soliton solution to the model equations of motion, consisting of a periodic train of polariton pulses, is obtained in terms of Jacobi elliptic functions. Exact analytical expressions corresponding to the energies of both photonic and excitonic components of the pulse train are found. Results suggest that the size (i.e. the length) of a microwire waveguide plays a relevant role in obtaining a quantitative estimate of the energy that could be conveyed by polariton solitons propagating in the medium.
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied using time- and spatially-resolved spectroscopy. The switching is triggered by polarised short pulses which create spin bullets of high polariton density. The spin packets travel with speeds of the order of 106 m/s due to the ballistic propagation and drift of exciton-polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.
117 - O. Bleu , G. Li , J. Levinsen 2020
We investigate the interactions between exciton-polaritons in N two-dimensional semiconductor layers embedded in a planar microcavity. In the limit of low-energy scattering, where we can ignore the composite nature of the excitons, we obtain exact analytical expressions for the spin-triplet and spin-singlet interaction strengths, which go beyond the Born approximation employed in previous calculations. Crucially, we find that the strong light-matter coupling enhances the strength of polariton-polariton interactions compared to that of the exciton-exciton interactions, due to the Rabi coupling and the small photon-exciton mass ratio. We furthermore obtain the dependence of the polariton interactions on the number of layers N, and we highlight the important role played by the optically dark states that exist in multiple layers. In particular, we predict that the singlet interaction strength is stronger than the triplet one for a wide range of parameters in most of the currently used transition metal dichalcogenides. This has consequences for the pursuit of polariton condensation and other interaction-driven phenomena in these materials.
102 - G. Diaz-Camacho , C. Tejedor , 2018
We consider a polariton microcavity resonantly driven by two external lasers which simultaneously pump both lower and upper polariton branches at normal incidence. In this setup, we study the occurrence of instabilities of the pump-only solutions towards the spontaneous formation of patterns. Their appearance is a consequence of the spontaneous symmetry breaking of translational and rotational invariance due to interaction induced parametric scattering. We observe the evolution between diverse patterns which can be classified as single-pump, where parametric scattering occurs at the same energy as one of the pumps, and as two-pump, where scattering occurs at a different energy. For two-pump instabilities, stripe and chequerboard patterns become the dominant steady-state solutions because cubic parametric scattering processes are forbidden. This contrasts with the single-pump case, where hexagonal patterns are the most common arrangements. We study the possibility of controlling the evolution between different patterns. Our results are obtained within a linear stability analysis and are confirmed by finite size full numerical calculations.
Observations of polariton condensation in semiconductor microcavities suggest that polaritons can be exploited as a novel type of laser with low input-power requirements. The low-excitation regime is approximately equivalent to thermal equilibrium, and a higher excitation results in more dominant nonequilibrium features. Although standard photon lasing has been experimentally observed in the high excitation regime, e-h pair binding can still remain even in the high-excitation regime theoretically. Therefore, the photoluminescence with a different photon lasing mechanism is predicted to be different from that with a standard photon lasing. In this paper, we report the temperature dependence of the change in photoluminescence with the excitation density. The second threshold behavior transited to the standard photon lasing is not measured at a low-temperature, high-excitation power regime. Our results suggest that there may still be an electron--hole pair at this regime to give a different photon lasing mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا