Do you want to publish a course? Click here

Spontaneous patterns in coherently driven polariton microcavities

103   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a polariton microcavity resonantly driven by two external lasers which simultaneously pump both lower and upper polariton branches at normal incidence. In this setup, we study the occurrence of instabilities of the pump-only solutions towards the spontaneous formation of patterns. Their appearance is a consequence of the spontaneous symmetry breaking of translational and rotational invariance due to interaction induced parametric scattering. We observe the evolution between diverse patterns which can be classified as single-pump, where parametric scattering occurs at the same energy as one of the pumps, and as two-pump, where scattering occurs at a different energy. For two-pump instabilities, stripe and chequerboard patterns become the dominant steady-state solutions because cubic parametric scattering processes are forbidden. This contrasts with the single-pump case, where hexagonal patterns are the most common arrangements. We study the possibility of controlling the evolution between different patterns. Our results are obtained within a linear stability analysis and are confirmed by finite size full numerical calculations.



rate research

Read More

We study the properties of propagating polariton wave-packets and their connection to the stability of doubly charged vortices. Wave-packet propagation and related photoluminescence spectra exhibit a rich behaviour dependent on the excitation regime. We show that, because of the non-quadratic polariton dispersion, doubly charged vortices are stable only when initiated in wave-packets propagating at small velocities. Vortices propagating at larger velocities, or those imprinted directly into the polariton optical parametric oscillator (OPO) signal and idler are always unstable to splitting.
Driving a many-body system out of equilibrium induces phenomena such as the emergence and decay of transient states, which can manifest itself as pattern and domain formation. The understanding of these phenomena expands the scope of established thermodynamics into the out-of-equilibrium domain. Here, we study the out-of-equilibrium dynamics of a bosonic lattice model subjected to a strong DC field, realized as ultracold atoms in a strongly tilted triangular optical lattice. We observe the emergence of pronounced density wave patterns - which spontaneously break the underlying lattice symmetry - using a novel single-shot imaging technique with single-site resolution in three-dimensional systems, which even resolves the domain structure [1]. We explain the dynamics as arising from resonant pair tunneling processes within an effective description of the tilted Hubbard model [2]. More broadly, we establish the far out-of-equilibrium regime of lattice models subjected to a strong DC field, as an exemplary and paradigmatic scenario for transient pattern formation.
We present the theoretical prediction of spontaneous rotating vortex rings in a parametrically driven quantum fluid of polaritons -- coherent superpositions of coupled quantum well excitons and microcavity photons. These rings arise not only in the absence of any rotating drive, but also in the absence of a trapping potential, in a model known to map quantitatively to experiments. We begin by proposing a novel parametric pumping scheme for polaritons, with circular symmetry and radial currents, and characterize the resulting nonequilibrium condensate. We show that the system is unstable to spontaneous breaking of circular symmetry via a modulational instability, following which a vortex ring with large net angular momentum emerges, rotating in one of two topologically distinct states. Such rings are robust and carry distinctive experimental signatures, and so they could find applications in the new generation of polaritonic devices.
The polariton-polariton interaction strength is an important parameter for all kinds of applications using the nonlinear properties of polaritons, such as optical switching and single-photon blockade devices. Over the past few years, as experiments with polariton condensates in microcavities have become more sophisticated, there have been several different types of experiments aimed at establishing the absolute value of this parameter. In this paper, we review and compare the results of many of these experiments, and present new theoretical analysis of some of them. The results of measurements sensitive to the polariton scattering rate, though frequently neglected, are especially significant for the low-density estimates. We find that even when adjustments are made to correct for new understanding of past experiments, the values range over two orders of magnitude, with the low values mostly coming from experiments with high polariton density, and the high values coming from experiments at low density. We show that calculation of many-body effects on the effective interaction can give a significant reduction of the effective interaction strength at high density.
An infinite chain of driven-dissipative condensate spins with uniform nearest-neighbor coherent coupling is solved analytically and investigated numerically. Above a critical occupation threshold the condensates undergo spontaneous spin bifurcation (becoming magnetized) forming a binary chain of spin-up or spin-down states. Minimization of the bifurcation threshold determines the magnetic order as a function of the coupling strength. This allows control of multiple magnetic orders via adiabatic (slow ramping of) pumping. In addition to ferromagnetic and anti-ferromagnetic ordered states we show the formation of a paired-spin ordered state $left|dots uparrow uparrow downarrow downarrow dots right. rangle$ as a consequence of the phase degree of freedom between condensates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا