Do you want to publish a course? Click here

Isotopically varying spectral features of silicon vacancy in diamond

288   0   0.0 ( 0 )
 Added by Kay Daniel Jahnke
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The silicon-vacancy centre (SiV) in diamond has interesting vibronic features. We demonstrate that the zero phonon line position can be used to reliably identify the silicon isotope present in a single centre. This is of interest for quantum information applications since only the silicon 29 isotope has nuclear spin. In addition, we demonstrate that the 64 meV line is due to a local vibrational mode of the silicon atom. The presence of a local mode suggests a plausible origin of the isotopic shift of the zero phonon line.



rate research

Read More

We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV$^-$) color centers in diamond as quantum emitters. Hybrid SiC/diamond structures are realized by combining the growth of nanoand micro-diamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV$^-$ color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ionimplantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV$^-$ on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV$^-$ centers. Scanning confocal photoluminescence measurements reveal optically active SiV$^-$ lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow linewidths and small inhomogeneous broadening of SiV$^-$ lines from all-diamond nano-pillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV$^-$ centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.
We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-$^{28}$SiC) and find extra terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which are otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity of 87 nT Hz$^{-1/2}$ within a volume of $3 times 10^{-7}$ mm$^{3}$ at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radiofrequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm$^{3}$ the projection noise limit is below 100 fT Hz$^{-1/2}$.
The neutrally-charged silicon vacancy in diamond is a promising system for quantum technologies that combines high-efficiency, broadband optical spin polarization with long spin lifetimes (T2 ~ 1 ms at 4 K) and up to 90% of optical emission into its 946 nm zero-phonon line. However, the electronic structure of SiV0 is poorly understood, making further exploitation difficult. Performing photoluminescence spectroscopy of SiV0 under uniaxial stress, we find the previous excited electronic structure of a single 3A1u state is incorrect, and identify instead a coupled 3Eu - 3A2u system, the lower state of which has forbidden optical emission at zero stress and so efficiently decreases the total emission of the defect: we propose a solution employing finite strain to form the basis of a spin-photon interface. Isotopic enrichment definitively assigns the 976 nm transition associated with the defect to a local mode of the silicon atom.
Nanodiamonds containing color centers open up many applications in quantum information processing, metrology, and quantum sensing. In particular, silicon vacancy (SiV) centers are prominent candidates as quantum emitters due to their beneficial optical qualities. Here we characterize nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centers. Our results show that nanodiamond growth can be controlled and optimized for different applications.
The negatively-charged silicon-vacancy (SiV$^-$) center in diamond is a promising single photon source for quantum communications and information processing. However, the centers implementation in such quantum technologies is hindered by contention surrounding its fundamental properties. Here we present optical polarization measurements of single centers in bulk diamond that resolve this state of contention and establish that the center has a $langle111rangle$ aligned split-vacancy structure with $D_{3d}$ symmetry. Furthermore, we identify an additional electronic level and evidence for the presence of dynamic Jahn-Teller effects in the centers 738 nm optical resonance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا