Do you want to publish a course? Click here

Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centers

115   0   0.0 ( 0 )
 Added by Victor Leong
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanodiamonds containing color centers open up many applications in quantum information processing, metrology, and quantum sensing. In particular, silicon vacancy (SiV) centers are prominent candidates as quantum emitters due to their beneficial optical qualities. Here we characterize nanodiamonds produced by a high-pressure high-temperature method without catalyst metals, focusing on two samples with clear SiV signatures. Different growth temperatures and relative content of silicon in the initial compound between the samples altered their nanodiamond size distributions and abundance of SiV centers. Our results show that nanodiamond growth can be controlled and optimized for different applications.



rate research

Read More

Vacancy centers in diamond have proven to be a viable solid-state platform for quantum coherent opto-electronic applications. Among the variety of vacancy centers, silicon-vacancy (SiV) centers have recently attracted much attention as an inversion-symmetric system that is less susceptible to electron-phonon interactions. Nevertheless, phonon-mediated processes still degrade the coherent properties of SiV centers, however characterizing their electron-phonon coupling is extremely challenging due to their weak spectroscopic signatures and remains an open experimental problem. In this paper we theoretically investigate signatures of electron-phonon coupling in simulated linear and nonlinear spectra of SiV centers. We demonstrate how even extremely weak electron-phonon interactions, such as in SiV centers, may be completely characterized via nonlinear spectroscopic techniques and even resolved between different fine-structure transitions.
The silicon-vacancy centre (SiV) in diamond has interesting vibronic features. We demonstrate that the zero phonon line position can be used to reliably identify the silicon isotope present in a single centre. This is of interest for quantum information applications since only the silicon 29 isotope has nuclear spin. In addition, we demonstrate that the 64 meV line is due to a local vibrational mode of the silicon atom. The presence of a local mode suggests a plausible origin of the isotopic shift of the zero phonon line.
We demonstrate that silicon-vacancy (SiV) centers in diamond can be used to efficiently generate coherent optical photons with excellent spectral properties. We show that these features are due to the inversion symmetry associated with SiV centers, and demonstrate generation of indistinguishable single photons from separate emitters in a Hong-Ou-Mandel (HOM) interference experiment.Prospects for realizing efficient quantum network nodes using SiV centers are discussed.
We demonstrate an all-optical thermometer based on an ensemble of silicon-vacancy centers (SiVs) in diamond by utilizing a temperature dependent shift of the SiV optical zero-phonon line transition frequency, $Deltalambda/Delta T= 6.8,mathrm{GHz/K}$. Using SiVs in bulk diamond, we achieve $70,mathrm{mK}$ precision at room temperature with a sensitivity of $360,mathrm{mK/sqrt{Hz}}$. Finally, we use SiVs in $200,mathrm{nm}$ nanodiamonds as local temperature probes with $521,mathrm{ mK/sqrt{Hz}}$ sensitivity. These results open up new possibilities for nanoscale thermometry in biology, chemistry, and physics, paving the way for control of complex nanoscale systems.
The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are promising fluorophores for STED microscopy, owing to their photostable, near-infrared emission and favorable photophysical properties. A home-built pulsed STED microscope was used to image shallow implanted SiV centers in bulk diamond at room temperature. The SiV stimulated emission cross section for 765-800 nm light is found to be (4.0 +/- 0.3) x 10^(-17) cm^2, which is approximately 2-4 times larger than that of the negatively-charged diamond nitrogen vacancy center and approaches that of commonly-used organic dye molecules. We performed STED microscopy on isolated SiV centers and observed a lateral full-width-at-half-maximum spot size of 89 +/- 2 nm, limited by the low available STED laser pulse energy (0.4 nJ). For a pulse energy of 5 nJ, the resolution is expected to be ~20 nm. We show that the present microscope can resolve SiV centers separated by <150 nm that cannot be resolved by confocal microscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا