Do you want to publish a course? Click here

Optimization of a large aperture dipole magnet for baryonic matter studies at Nuclotron

100   0   0.0 ( 0 )
 Added by Vladimir Ladygin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aperture of the dipole magnet SP41 has been enlarged for the studies of dense baryonic matter properties at Nuclotron. The homogeneity of the magnetic field in the magnet centre has been improved. The measurement results of the magnetic field components and integral are compared with results of 3D TOSCA calculations.



rate research

Read More

The prototype of the hadron calorimeter module consisting of 66 scintillator/lead layers with the 15x15 cm^2 cross section and 5 nuclear interaction lengths has been designed and produced for the zero degree calorimeter of the BM@N experiment. The prototype has been tested with high energy muon beam of the U-70 accelerator at IHEP. The results of the beam test for different types of photo multipliers and light guides are presented. The results of the Monte-Carlo simulation of the calorimeter response and energy resolution are presented for the 2-16 GeV protons.
Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in v{R}ev{z} are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.
We present a pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies with the magnetic field applied on or close to the scattering plane. The apparatus consists of a single large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields close to $sim 30$ T with a zero-to-peak-field rise time of $sim$2.9 ms are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle ($sim 23.6^circ$) on the entrance and exit sides of the magnet bore by virtue of a novel double-funnel insert. This instrument will facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using split-pair and narrow-opening solenoid magnets, and offers a practical solution for preserving optical access in future higher-field pulsed magnets.
The current deuteron beam polarimetry at Nuclotron is provided by the Internal Target polarimeter based on the use of the asymmetry in dp- elastic scattering at large angles in the cms at 270 MeV. The upgraded deuteron beam polarimeter has been used obtain the vector and tensor polarization during 2016/2017 runs for the DSS experimental program. The polarimeter has been used also for tuning of the polarized ion source parameters for 6 different spin modes.
66 - T. Ogawa 2017
One of the potential problems of a Micro-Pattern Gaseous Detector (MPGD)-based Time Projection Chamber (TPC) is the Ion back Flow (IBF): ions generated through the avalanche amplification process flow back to the drift volume of the TPC and disarrange an electric field inside it. Consequently non-negligible degradation of azimuthal spatial resolution is caused due to this IBF. Meanwhile, it is necessary to collect primary ionized electrons to maintain intrinsic performance of the MPGDs. The MPGD based TPC is currently planned to be used as a central tracking detector of the International Large Detector (ILD), which is one of the detector concepts for the future International Linear Collider (ILC) project, and which requires fine azimuthal spatial resolution of less than 100 ${rm mu m}$ over the drift length of the TPC to attain high momentum resolution. Because of a unique beam structure of the ILC, the IBF is a critical issue for the realization of the ILD-TPC. Not only to suppress the ion back-flow to the drift volume, but also to allow the primary electrons pass through, a large aperture GEM-like gating device has been developed. Several bench tests for confirming the performance of the gating device have been conducted, besides that, beam test with the full detector module equipped with the gating device was carried out to verify the resolution that the full module can provide. As a result, it turned out that the developed gating device fulfills requirements for maintaining the performance of the MPGD based TPC, and it has sufficient performance for the central tracker of the ILD at the ILC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا