The current deuteron beam polarimetry at Nuclotron is provided by the Internal Target polarimeter based on the use of the asymmetry in dp- elastic scattering at large angles in the cms at 270 MeV. The upgraded deuteron beam polarimeter has been used obtain the vector and tensor polarization during 2016/2017 runs for the DSS experimental program. The polarimeter has been used also for tuning of the polarized ion source parameters for 6 different spin modes.
The spin program at NICA using SPD and MPD requires high intensity polarized proton beam with high value of the beam polarization. First results on the measurements of the proton beam polarization performed at internal target at Nuclotron are reported. The polarization of the proton beam provided by new source of polarized ions has been measured at 500 MeV using quasielastic proton-proton scattering and DSS setup at internal target. The obtained value of the vertical polarization of ~35 % is consistent with the calculations taking into account the current magnetic optics of the Nuclotron injection line.
The results of the measurements of the vector polarization of the extracted deuteron beam at Nuclotron are presented. The intensity of the polarized deuteron beam during the measurements was 2.5*10^7 particles/spill. The measurements were made at the initial deuteron momenta of 5 and 3.5 GeV/c. The averaged polarizations of the beam were 0.606 +/- 0.014 and 0.540+/- 0.019, respectively.
A deuteron beam polarimeter has been constructed at the Internal Target Station at the Nuclotron of JINR. The polarimeter is based on spin-asymmetry measurements in the d-p elastic scattering at large angles and the deuteron kinetic energy of 270 MeV. It allows to measure vector and tensor components of the deuteron beam polarization simultaneously.
The CSR External-target Experiment (CEE) will be the first large-scale nuclear physics experiment device at the Cooling Storage Ring (CSR) of the Heavy-Ion Research Facility in Lanzhou (HIRFL) in China. A new T0 detector has been proposed to measure the multiplicity, angular distribution and timing information of charged particles produced in heavy-ion collisions at the target region. Multi-gap resistive plate chamber (MRPC) technology was chosen as part of the construction of the T0 detector, which provides precision event collision times (T0) and collision geometry information. The prototype was tested with hadron and heavy-ion beams to study its performance. By comparing the experimental results with a Monte Carlo simulation, the time resolution of the MRPCs are found to be $sim$ 50 ps or better. The timing performance of the T0 detector, including both detector and readout electronics, we found to fulfil the requirements of the CEE.
A 280 ml liquid hydrogen target has been constructed and tested for the MUSE experiment at PSI to investigate the proton charge radius via simultaneous measurement of elastic muon-proton and elastic electron-proton scattering. To control systematic uncertainties at a sub-percent level, strong constraints were put on the amount of material surrounding the target and on its temperature stability. The target cell wall is made of $120,mu$m-thick Kapton, while the beam entrance and exit windows are made of $125,mu$m-thick aluminized Kapton. The side exit windows are made of Mylar laminated on aramid fabric with an areal density of $368,$g/m$^2$. The target system was successfully operated during a commissioning run at PSI at the end of 2018. The target temperature was stable at the 0.01 K level. This suggests a density stability at the $0.02,$% level, which is about a factor of ten better than required.
Ya.T.Skhomenko
,V.P.Ladygin
,Yu.V.Gurchin
.
(2017)
.
"Measurement of the deuteron beam polarization at internal target at Nuclotron for DSS experiment"
.
Vladimir Ladygin
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا