Do you want to publish a course? Click here

Finite state mean field games with Wright Fisher common noise as limits of $N$-player weighted games

87   0   0.0 ( 0 )
 Added by Asaf Cohen
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fisher noise, very much in the spirit of stochastic models in population genetics. A key feature is that such a random forcing preserves the structure of the simplex, which is nothing but, in this setting, the probability space over the state space of the game. The purpose of this article is hence to elucidate the finite player version and, accordingly, to prove that $N$-player equilibria indeed converge towards the solution of such a kind of Wright-Fisher mean field game. Whilst part of the analysis is made easier by the fact that the corresponding master equation has already been proved to be uniquely solvable under the presence of the common noise, it becomes however more subtle than in the standard setting because the mean field interaction between the players now occurs through a weighted empirical measure. In other words, each player carries its own weight, which hence may differ from $1/N$ and which, most of all, evolves with the common noise.



rate research

Read More

Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer [7] and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mean-field, leave the game as soon as their private states hit some given boundary. In this paper, we push the study of such games further, extending their scope along two main directions. First, a direct dependence on past absorptions has been introduced in the drift of players state dynamics. Second, the boundedness of coefficients and costs has been considerably relaxed including drift and costs with linear growth. Therefore, the mean-field interaction among the players takes place in two ways: via the empirical sub-probability measure of the surviving players and through a process representing the fraction of past absorptions over time. Moreover, relaxing the boundedness of the coefficients allows for more realistic dynamics for players private states. We prove existence of solutions of the mean-field game in strict as well as relaxed feedback form. Finally, we show that such solutions induce approximate Nash equilibria for the $N$-player game with vanishing error in the mean-field limit as $N to infty$.
A theory of existence and uniqueness is developed for general stochastic differential mean field games with common noise. The concepts of strong and weak solutions are introduced in analogy with the theory of stochastic differential equations, and existence of weak solutions for mean field games is shown to hold under very general assumptions. Examples and counter-examples are provided to enlighten the underpinnings of the existence theory. Finally, an analog of the famous result of Yamada and Watanabe is derived, and it is used to prove existence and uniqueness of a strong solution under additional assumptions.
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This proof depends upon the derivation of a law of large numbers for the empirical processes in the limit as the number of players tends to infinity. Because it is of independent interest, we prove this result in full detail. We characterize the solutions of the limiting game via a verification argument.
We study Nash equilibria for a sequence of symmetric $N$-player stochastic games of finite-fuel capacity expansion with singular controls and their mean-field game (MFG) counterpart. We construct a solution of the MFG via a simple iterative scheme that produces an optimal control in terms of a Skorokhod reflection at a (state-dependent) surface that splits the state space into action and inaction regions. We then show that a solution of the MFG of capacity expansion induces approximate Nash equilibria for the $N$-player games with approximation error $varepsilon$ going to zero as $N$ tends to infinity. Our analysis relies entirely on probabilistic methods and extends the well-known connection between singular stochastic control and optimal stopping to a mean-field framework.
We consider a mean field game describing the limit of a stochastic differential game of $N$-players whose state dynamics are subject to idiosyncratic and common noise and that can be absorbed when they hit a prescribed region of the state space. We provide a general result for the existence of weak mean field equilibria which, due to the absorption and the common noise, are given by random flow of sub-probabilities. We first use a fixed point argument to find solutions to the mean field problem in a reduced setting resulting from a discretization procedure and then we prove convergence of such equilibria to the desired solution. We exploit these ideas also to construct $varepsilon$-Nash equilibria for the $N$-player game. Since the approximation is two-fold, one given by the mean field limit and one given by the discretization, some suitable convergence results are needed. We also introduce and discuss a novel model of bank run that can be studied within this framework.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا