No Arabic abstract
In magnetoplasmonics, it is possible to tailor the magneto-optical properties of nanostructures by exciting surface plasmon polaritons (SPPs). Thus far, magnetoplasmonic effects have been considered static. Here, we describe ultrafast manifestations of magnetoplasmonics by observing the non-trivial evolution of the transverse magneto-optic Kerr effect within 45-fs pulses reflected from an iron-based magnetoplasmonic crystal. The effect occurs for resonant SPP excitations, displays opposite time derivative signs for different slopes of the resonance, and is explained with the magnetization-dependent dispersion relation of SPPs.
Large surface plasmon polariton assisted enhancement of the magneto-optical activity has been observed in the past, through spectral measurements of the polar Kerr rotation in Co hexagonal antidot arrays. Here, we report a strong thickness dependence, which is unexpected given that the Kerr effect is considered a surface sensitive phenomena. The maximum Kerr rotation was found to be -0.66 degrees for a 100 nm thick sample. This thickness is far above the typical optical penetration depth of a continuous Co film, demonstrating that in the presence of plasmons the critical lengthscales are dramatically altered, and in this case extended. We therefore establish that the plasmon enhanced Kerr effect does not only depend on the in-plane structuring of the sample, but also on the out-of-plane geometrical parameters, which is an important consideration in magnetoplasmonic device design.
In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the first one a liquid crystal has been infiltrated in the pores of the nanoparticle network, while in the second one the optical response to the electric field of metallic nanoparticles has been exploited. Then, we present a 1D photonic crystal made with indium tin oxide (ITO) nanoparticles, and we propose this system for electro-optic tuning. Finally, we describe a microcavity with a defect mode that is tuned in the near infrared by the magnetic field, envisaging a contact-less magneto-optic switch. These optical switches can find applications in ICT and electrochromic windows.
Nanostructuring hard optical crystals has so far been exclusively feasible at their surface, as stress induced crack formation and propagation has rendered high precision volume processes ineffective. We show that the inner chemical etching reactivity of a crystal can be enhanced at the nanoscale by more than five orders of magnitude by means of direct laser writing. The process allows to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm feature sizes inside large crystals in absence of brittle fracture. To showcase the unique potential of the technique, we fabricate photonic structures such as sub-wavelength diffraction gratings and nanostructured optical waveguides capable of sustaining sub-wavelength propagating modes inside yttrium aluminum garnet crystals. This technique could enable the transfer of concepts from nanophotonics to the fields of solid state lasers and crystal optics.
The processes of energy gain and redistribution in a dense gas subject to an intense ultrashort laser pulse are investigated theoretically for the case of high-pressure argon. The electrons released via strong-field ionization and driven by oscillating laser field collide with neutral neighbor atoms, thus effecting the energy gain in the emerging electron gas via a short-range inverse Bremsstrahlung interaction. These collisions also cause excitation and impact ionization of the atoms thus reducing the electron-gas energy. A kinetic model of these competing processes is developed which predicts the prevalence of excited atoms over ionized atoms by the end of the laser pulse. The creation of a significant number of excited atoms during the pulse in high-pressure gases is consistent with the delayed ionization dynamics in the pulse wake, recently discovered by Gao et al.[1] This energy redistribution mechanism offers an approach to manage effectively the excitation vs. ionization patterns in dense gases interacting with intense laser pulses and thus opens new avenues for diagnostics and control in these settings.
We theoretically investigate the piezo-optic effect of high-harmonic generation (HHG) in shear-strained semiconductors. By focusing on a typical semiconductor, GaAs, we show that there is optical activity, meaning different responses to right-handed and left-handed elliptically polarized electric fields. We also show that this optical activity is more pronounced for higher harmonics whose perturbative order exceeds the band-gap energy. These findings point to a useful pathway for strain engineering of nonlinear optics to control the reciprocity of HHG.