Do you want to publish a course? Click here

A treatment of strongly operator convex functions that does not require any knowledge of operator algebras

155   0   0.0 ( 0 )
 Added by Lawrence Brown
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

In [B1, Theorem 2.36] we proved the equivalence of six conditions on a continuous function f on an interval. These conditions define a subset of the set of operator convex functions, whose elements are called strongly operator convex. Two of the six conditions involve operator-algebraic semicontinuity theory, as given by C. Akemann and G. Pedersen in [AP], and the other four conditions do not involve operator algebras at all. Two of these conditions are operator inequalities, one is a global condition on f, and the fourth is an integral representation of f stronger than the usual integral representation for operator convex functions. The purpose of this paper is to make the equivalence of these four conditions accessible to people who do not know operator algebra theory as well as to operator algebraists who do not know the semicontinuity theory. We also provide a similar treatment of one theorem from [B1] concerning (usual) operator convex functions. And in two final sections we give a somewhat tentative treatment of some other operator inequalities for strongly operator convex functions, and we give a differential criterion for strong operator convexity.



rate research

Read More

This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We also show that if t_0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t) - f(t_0))/(t - t_0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of phi circ f when f is operator convex or strongly operator convex.
Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for operator convex functions on bounded intervals. More precisely, we prove that if $f$ is a nonlinear operator convex function on a bounded interval $(a,b)$ and $A, B$ are bounded linear operators acting on a Hilbert space with spectra in $(a,b)$ and $A-B$ is invertible, then $sf(A)+(1-s)f(B)>f(sA+(1-s)B)$. A short proof for a similar known result concerning a nonconstant operator monotone function on $[0,infty)$ is presented. Another purpose is to find a lower bound for $f(A)-f(B)$, where $f$ is a nonconstant operator monotone function, by using a key lemma. We also give an estimation of the Furuta inequality, which is an excellent extension of the Lowner--Heinz inequality.
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Aglers theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.
In this paper, we introduce the concept of operator geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results.
In this paper, we introduce the concept of operator arithmetic-geometrically convex functions for positive linear operators and prove some Hermite-Hadamard type inequalities for these functions. As applications, we obtain trace inequalities for operators which give some refinements of previous results. Moreover, some unitarily invariant norm inequalities are established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا