Do you want to publish a course? Click here

Estimates of operator convex and operator monotone functions on bounded intervals

109   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

Recently the behavior of operator monotone functions on unbounded intervals with respect to the relation of strictly positivity has been investigated. In this paper we deeply study such behavior not only for operator monotone functions but also for operator convex functions on bounded intervals. More precisely, we prove that if $f$ is a nonlinear operator convex function on a bounded interval $(a,b)$ and $A, B$ are bounded linear operators acting on a Hilbert space with spectra in $(a,b)$ and $A-B$ is invertible, then $sf(A)+(1-s)f(B)>f(sA+(1-s)B)$. A short proof for a similar known result concerning a nonconstant operator monotone function on $[0,infty)$ is presented. Another purpose is to find a lower bound for $f(A)-f(B)$, where $f$ is a nonconstant operator monotone function, by using a key lemma. We also give an estimation of the Furuta inequality, which is an excellent extension of the Lowner--Heinz inequality.



rate research

Read More

This paper concerns three classes of real-valued functions on intervals, operator monotone functions, operator convex functions, and strongly operator convex functions. Strongly operator convex functions were previously treated in [3] and [4], where operator algebraic semicontinuity theory or operator theory were substantially used. In this paper we provide an alternate treatment that uses only operator inequalities (or even just matrix inequalities). We also show that if t_0 is a point in the domain of a continuous function f, then f is operator monotone if and only if (f(t) - f(t_0))/(t - t_0) is strongly operator convex. Using this and previously known results, we provide some methods for constructing new functions in one of the three classes from old ones. We also include some discussion of completely monotone functions in this context and some results on the operator convexity or strong operator convexity of phi circ f when f is operator convex or strongly operator convex.
203 - Victor Kaftal 2007
This article - a part of a multipaper project investigating arithmetic mean ideals - investigates the codimension of commutator spaces [I, B(H)] of operator ideals on a separable Hilbert space, i.e., ``How many traces can an ideal support? We conjecture that the codimension can be only zero, one, or infinity. Using the arithmetic mean (am) operations on ideals introduced by Dykema, Figiel, Weiss, and Wodzicki, and the analogous am operations at infinity that we develop in this article, the conjecture is proven for all ideals not contained in the largest am-infinity stable ideal and not containing the smallest am-stable ideal. It is also proven for all soft-edged ideals (i.e., I= IK(H)) and all soft-complemented ideals (i.e., I= I/K(H)), which include many classical operator ideals. In the process, we prove that an ideal of trace class operators supports a unique trace (up to scalar multiples) if and only if it is am-infinity stable and that, for a principal ideal, am-infinity stability is equivalent to regularity at infinity of the sequence of s-numbers of the generator. Furthermore, we apply trace extension methods to two problems on elementary operators studied by V. Shulman and to Fuglede-Putnam type problems of the second author.
165 - Victor Kaftal 2007
We develop a natural generalization of vector-valued frame theory, we term operator-valued frame theory, using operator-algebraic methods. This extends work of the second author and D. Han which can be viewed as the multiplicity one case and extends to higher multiplicity (e.g., multiframes) their dilation approach. We prove several results for operator-valued frames concerning their parametrization, duality, disjointeness, complementarity, and composition and the relationship between the two types of similarity (left and right) of such frames. We then apply these notions to prove that the collection of multiframe generators for the action of a discrete group on a Hilbert space is norm pathwise-connected precisely when the von Neumann algebra generated by the right representation of the group has no minimal projections. The proof is obtained by parametrizing this collection by a class of partial isometries in a larger von Neumann algebra. In the multiplicity one case this class reduces to the unitary class which is path-connected in norm, but in the infinite multiplicity case this class is path connected only in the strong operator topology and the proof depends on properties of tensor product slice maps.
190 - B. F. Svaiter 2008
Any maximal monotone operator can be characterized by a convex function. The family of such convex functions is invariant under a transformation connected with the Fenchel-Legendre conjugation. We prove that there exist a convex representation of the operator which is a fixed point of this conjugation.
154 - Lawrence G. Brown 2014
In [B1, Theorem 2.36] we proved the equivalence of six conditions on a continuous function f on an interval. These conditions define a subset of the set of operator convex functions, whose elements are called strongly operator convex. Two of the six conditions involve operator-algebraic semicontinuity theory, as given by C. Akemann and G. Pedersen in [AP], and the other four conditions do not involve operator algebras at all. Two of these conditions are operator inequalities, one is a global condition on f, and the fourth is an integral representation of f stronger than the usual integral representation for operator convex functions. The purpose of this paper is to make the equivalence of these four conditions accessible to people who do not know operator algebra theory as well as to operator algebraists who do not know the semicontinuity theory. We also provide a similar treatment of one theorem from [B1] concerning (usual) operator convex functions. And in two final sections we give a somewhat tentative treatment of some other operator inequalities for strongly operator convex functions, and we give a differential criterion for strong operator convexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا