Do you want to publish a course? Click here

Cluster Formation Triggered by Filament Collisions in Serpens South

113   0   0.0 ( 0 )
 Added by Fumitaka Nakamura
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS ($J_N=4_3-3_2$), HC$_3$N ($J=5-4$), N$_2$H$^+$ ($J=1-0$), and SiO ($J=2-1, v=0$) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely-strong CCS emission is detected. The CCS-to-N$_2$H$^+$ abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different $V_{rm LSR}$. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few $times 10^5$ yr because CCS is abundant only in such a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is $0.4 times 10^5$ yr, is extremely high as about 70 percent in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.



rate research

Read More

139 - Fumitaka Nakamura 2011
We present the results of CO ($J=3-2$) and HCO$^+$ ($J=4-3$) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO ($J=3-2$) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as a HCO$^+$ clump with a size of $sim$ 0.2 pc and mass of $sim$ 80 M$_odot$. The clump contains several subfragments with sizes of $sim$ 0.05 pc. By comparing the CO ($J=3-2$) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we find that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated at 0.6 $M_odot$, 8 $M_odot$ km s$^{-1}$, and 64 $M_odot$ km$^2$ s$^{-2}$, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can maintain the supersonic turbulence in this region. The total outflow energy seems only about 10 percent the clump gravitational energy. We conclude that the current outflow activity is not enough to destroy the whole cluster-forming clump, and therefore star formation is likely to continue for several or many local dynamical times.
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components have been discussed as the mechanism which triggered the massive star formation in W51A. In this paper, we report an observational study of the molecular clouds in W51A using the new 12CO, 13CO, and C18O (J=1-0) data covering a 1.4x1.0 degree region of W51A obtained with the Nobeyama 45-m telescope at 20 resolution. Our CO data resolved the four discrete velocity clouds at 50, 56, 60, and 68 km/s with sizes and masses of ~30 pc and 1.0-1.9x10^5 Msun. Toward the central part of the HII region complex G49.5-0.4, we identified four C18O clumps having sizes of ~1 pc and column densities of higher than 10^23 cm^-3, which are each embedded within the four velocity clouds. These four clumps are distributed close to each others within a small distance of 5 pc, showing a complementary distribution on the sky. In the position-velocity diagram, these clumps are connected with each others by bridge features with intermediate intensities. The high intensity ratios of 13CO (J=3-2/J=1-0) also indicates that these four clouds are associated with the HII regions. We also found these features in other HII regions in W51A. The timescales of the collisions are estimated to be several 0.1 Myrs as a crossing time of the clouds, which are consistent with the ages of the HII regions measured from the size of the HII regions in the 21 cm continuum emissions. We discuss the cloud-cloud collision scenario and massive star formation in W51A by comparing with the recent observational and theoretical studies of cloud-cloud collision.
181 - Y. Fukui , K. Torii , A. Ohama 2015
We present distributions of two molecular clouds having velocities of 2 km s$^{-1}$ and 14 km s$^{-1}$ toward RCW 38, the youngest super star cluster in the Milky Way, in the $^{12}$CO ($J=$1--0 and 3--2) and $^{13}$CO ($J=$1--0) transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the $J$=3--2 emission to the $J$=1--0 emission, the bridging feature connecting the two clouds in velocity and their morphological correspondence with the infrared dust emission. The total mass of the clouds and the cluster is too small to gravitationally bind the velocity difference. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the $sim$20 candidate O stars which are localized within $sim$0.3 pc of the cluster center in the 2 km s$^{-1}$ cloud. We suggest that the collision is currently continuing toward part of the 2 km s$^{-1}$ cloud where the bridging feature is localized. This is the third super star cluster alongside of Westerlund2 and NGC3603 where cloud-cloud collision triggered the cluster formation. RCW38 is the most remarkable and youngest cluster, holding a possible sign of on-going O star formation, and is the most promising site where we may be able to witness the moment of O-star formation.
Observations indicate that molecular clouds are strongly magnetized, and that magnetic fields influence the formation of stars. A key observation supporting the conclusion that molecular clouds are significantly magnetized is that the orientation of their internal structure is closely related to that of the magnetic field. At low column densities the structure aligns parallel with the field, whereas at higher column densities, the gas structure is typically oriented perpendicular to magnetic fields, with a transition at visual extinctions $A_Vgtrsim{}3~rm{}mag$. Here we use far-infrared polarimetric observations from the HAWC+ polarimeter on SOFIA to report the discovery of a further transition in relative orientation, i.e., a return to parallel alignment at $A_Vgtrsim{}21~rm{}mag$ in parts of the Serpens South cloud. This transition appears to be caused by gas flow and indicates that magnetic supercriticality sets in near $A_Vgtrsim{}21~rm{}mag$, allowing gravitational collapse and star cluster formation to occur even in the presence of relatively strong magnetic fields.
We propose and investigate a new formation mechanism for globular clusters in which they form within molecular clouds that are formed in the shocked regions created by galactic winds driven by successive supernova explosions shortly after the initial burst of massive star formation in the galactic centers. The globular clusters have a radial distribution that is more extended than that of the stars because the clusters form as pressure-confined condensations in a shell that is moving outward radially at high velocity. In addition the model is consistent with existing observations of other global properties of globular clusters, as far as comparisons can be made.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا