No Arabic abstract
Observations indicate that molecular clouds are strongly magnetized, and that magnetic fields influence the formation of stars. A key observation supporting the conclusion that molecular clouds are significantly magnetized is that the orientation of their internal structure is closely related to that of the magnetic field. At low column densities the structure aligns parallel with the field, whereas at higher column densities, the gas structure is typically oriented perpendicular to magnetic fields, with a transition at visual extinctions $A_Vgtrsim{}3~rm{}mag$. Here we use far-infrared polarimetric observations from the HAWC+ polarimeter on SOFIA to report the discovery of a further transition in relative orientation, i.e., a return to parallel alignment at $A_Vgtrsim{}21~rm{}mag$ in parts of the Serpens South cloud. This transition appears to be caused by gas flow and indicates that magnetic supercriticality sets in near $A_Vgtrsim{}21~rm{}mag$, allowing gravitational collapse and star cluster formation to occur even in the presence of relatively strong magnetic fields.
We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{mu}m -line imaging of the sim 30-long filamentary shaped Serpens South star forming region was carried out. K s broadband imaging of the same region was used for continuum subraction. Candidate driving sources of the mapped jets/outflows are identified from the list of known protostars and young stars in this region, which was derived from studies using recent Spitzer and Herschel telescope observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified using our continuum-subtracted images. They are found to constitute ten individual flows. Out of these, nine flows are located in the lower-half(southern) part of the Serpens South filament, and one flow is located at the northern tip of the filament. Four flows are driven by well-identified Class 0 protostars, while the remaining six flows are driven by candidate protostars mostly in the Class I stage, based on the Spitzer and Herschel observations. The orientation of the outflows is systematically perpendicular to the direction of the near-infrared polarization vector, recently published in the literature. No significant correlation was observed between the orientation of the flows and the axis of the filamentary cloud.
IRAS 18511+0146 is a young embedded (proto)cluster located at 3.5 kpc surrounding what appears to be an intermediate mass protostar. In this paper, we investigate the nature of cluster members (two of which are believed to be the most massive and luminous) using imaging and spectroscopy in the near and mid-infrared. The brightest point-like object associated with IRAS 18511+0146 is referred to as S7 in the present work (designated UGPS J185337.88+015030.5 in the UKIRT Galactic Plane survey). Seven of the nine objects show rising spectral energy distributions (SED) in the near-infrared, with four objects showing Br-gamma emission. Three members: S7, S10 (also UGPS J185338.37+015015.3) and S11 (also UGPS J185338.72+015013.5) are bright in mid-infrared with diffuse emission being detected in the vicinity of S11 in PAH bands. Silicate absorption is detected towards these three objects, with an absorption maximum between 9.6 and 9.7 um, large optical depths (1.8-3.2), and profile widths of 1.6-2.1 um. The silicate profiles of S7 and S10 are similar, in contrast to S11 (which has the largest width and optical depth). The cold dust emission investigated using Herschel HiGal peaks at S7, with temperature at 26 K and column density N(H2) ~ 7 x 10^(22) cm^(-2). The bolometric luminosity of IRAS 18511 region is L ~ 1.8 x 10^4 L_sun. S7 is the main contributor to the bolometric luminosity, with L (S7) > 10^4 L_sun. S7 is a high mass protostellar object with ionised stellar winds, evident from the correlation between radio and bolometric luminosity as well as the asymmetric Br-gamma profile. The differences in silicate profiles of S7 and S11 could be due to different radiation environment as we believe the former to be more massive and in an earlier phase than the latter.
The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS ($J_N=4_3-3_2$), HC$_3$N ($J=5-4$), N$_2$H$^+$ ($J=1-0$), and SiO ($J=2-1, v=0$) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely-strong CCS emission is detected. The CCS-to-N$_2$H$^+$ abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different $V_{rm LSR}$. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few $times 10^5$ yr because CCS is abundant only in such a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is $0.4 times 10^5$ yr, is extremely high as about 70 percent in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.
Filamentary structures are ubiquitous in molecular clouds, and have been recently argued to play an important role in regulating the size and mass of embedded clumps through fragmentation and mass accretion. Here, we reveal the dynamical state and fragmentation of filamentary molecular gas associated with the Serpens South protocluster through analysis of wide (~4 x 4 pc) observations of NH3 (1,1) and (2,2) inversion transitions with the Green Bank Telescope. Detailed modeling of the NH3 lines reveals that the kinematics of the cluster and surrounding filaments are complex. We identify hierarchical structure using a dendrogram analysis of the NH3 emission. The distance between neighbour structures that are embedded within the same parent structure is generally greater than expected from a spherical Jeans analysis, and is in better agreement with cylindrical fragmentation models. The NH3 line width-size relation is flat, and average gas motions are sub- or trans-sonic over all physical scales observed. Subsonic regions extend far beyond the typical 0.1 pc scale previously identified in star-forming cores. As a result, we find a strong trend of decreasing virial parameter with increasing structure mass in Serpens South. Extremely low virial parameters on the largest scales probed by our data suggest that the previously observed, ordered magnetic field is insufficient to support the region against collapse, in agreement with large radial infall motions previously measured toward some of the filaments. A more complex magnetic field configuration in the dense gas, however, may be able to support the filaments.
Aims. The aim of this paper is to characterise the star formation activity in the poorly studied embedded cluster Serpens/G3-G6, located ~ 45 (3 pc) to the south of the Serpens Cloud Core, and to determine the luminosity and mass functions of its population of Young Stellar Objects (YSOs). Methods. Multi-wavelength broadband photometry was obtained to sample the near and mid-IR spectral energy distributions to separate YSOs from field stars and classify the YSO evolutionary stage. ISOCAM mapping in the two filters LW2 (5-8.5 um) and LW3 (12-18 um) of a 19 x 16 field was combined with JHKs data from 2MASS, Ks data from Arnica/NOT, and L data from SIRCA/NOT. Continuum emission at 1.3 mm (IRAM) and 3.6 cm (VLA) was mapped to study the cloud structure and the coldest/youngest sources. Deep narrow band imaging at the 2.12 um S(1) line of H2 from NOTCam/NOT was obtained to search for signs of bipolar outflows. Results. We have strong evidence for a stellar population of 31 Class II sources, 5 flat-spectrum sources, 5 Class I sources, and two Class 0 sources. Our method does not sample the Class III sources. The cloud is composed of two main dense clumps aligned along a ridge over ~ 0.5 pc plus a starless core coinciding with absorption features seen in the ISOCAM maps. We find two S-shaped bipolar collimated flows embedded in the NE clump, and propose the two driving sources to be a Class 0 candidate (MMS3) and a double Class I (MMS2). For the Class II population we find a best age of ~ 2 Myr and compatibility with recent Initial Mass Functions (IMFs) by comparing the observed Class II luminosity function (LF), which is complete to 0.08 L_sun, to various model LFs with different star formation scenarios and input IMFs.