Do you want to publish a course? Click here

Molecular Outflows From the Protocluster, Serpens South

100   0   0.0 ( 0 )
 Added by Fumitaka Nakamura
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of CO ($J=3-2$) and HCO$^+$ ($J=4-3$) mapping observations toward a nearby embedded cluster, Serpens South, using the ASTE 10 m telescope. Our CO ($J=3-2$) map reveals that many outflows are crowded in the dense cluster-forming clump that can be recognized as a HCO$^+$ clump with a size of $sim$ 0.2 pc and mass of $sim$ 80 M$_odot$. The clump contains several subfragments with sizes of $sim$ 0.05 pc. By comparing the CO ($J=3-2$) map with the 1.1 mm dust continuum image taken by AzTEC on ASTE, we find that the spatial extents of the outflow lobes are sometimes anti-correlated with the distribution of the dense gas and some of the outflow lobes apparently collide with the dense gas. The total outflow mass, momentum, and energy are estimated at 0.6 $M_odot$, 8 $M_odot$ km s$^{-1}$, and 64 $M_odot$ km$^2$ s$^{-2}$, respectively. The energy injection rate due to the outflows is comparable to the turbulence dissipation rate in the clump, implying that the protostellar outflows can maintain the supersonic turbulence in this region. The total outflow energy seems only about 10 percent the clump gravitational energy. We conclude that the current outflow activity is not enough to destroy the whole cluster-forming clump, and therefore star formation is likely to continue for several or many local dynamical times.

rate research

Read More

We aimed to map the jets and outflows from the Serpens South star forming region and find an empirical relationship between the magnetic field and outflow orientation. Near-infrared H2 v=1-0 S(1) 2.122{mu}m -line imaging of the sim 30-long filamentary shaped Serpens South star forming region was carried out. K s broadband imaging of the same region was used for continuum subraction. Candidate driving sources of the mapped jets/outflows are identified from the list of known protostars and young stars in this region, which was derived from studies using recent Spitzer and Herschel telescope observations. 14 Molecular Hydrogen emission-line objects(MHOs) are identified using our continuum-subtracted images. They are found to constitute ten individual flows. Out of these, nine flows are located in the lower-half(southern) part of the Serpens South filament, and one flow is located at the northern tip of the filament. Four flows are driven by well-identified Class 0 protostars, while the remaining six flows are driven by candidate protostars mostly in the Class I stage, based on the Spitzer and Herschel observations. The orientation of the outflows is systematically perpendicular to the direction of the near-infrared polarization vector, recently published in the literature. No significant correlation was observed between the orientation of the flows and the axis of the filamentary cloud.
The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS ($J_N=4_3-3_2$), HC$_3$N ($J=5-4$), N$_2$H$^+$ ($J=1-0$), and SiO ($J=2-1, v=0$) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely-strong CCS emission is detected. The CCS-to-N$_2$H$^+$ abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different $V_{rm LSR}$. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few $times 10^5$ yr because CCS is abundant only in such a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is $0.4 times 10^5$ yr, is extremely high as about 70 percent in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.
88 - Luis A. Zapata 2017
With the recent recognition of a second, distinctive class of molecular outflows, namely the explosive ones not directly connected to the accretion-ejection process in the star formation, a juxtaposition of the morphological and kinematic properties of both classes is warranted. By applying the same method used in Zapata et al. (2009), and using $^{12}$CO(J=2-1) archival data from the Submillimeter Array (SMA), we contrast two well known explosive objects, Orion KL and DR21, to HH211 and DG Tau B, two flows representative of classical low-mass protostellar outflows. At the moment there are only two well established cases of explosive outflows, but with the full availability of ALMA we expect that more examples will be found in the near future. Main results are the largely different spatial distributions of the explosive flows, consisting of numerous narrow straight filament-like ejections with different orientations and in almost an isotropic configuration, the red with respect to the blueshifted components of the flows (maximally separated in protostellar, largely overlapping in explosive outflows), the very well-defined Hubble flow-like increase of velocity with distance from the origin in the explosive filaments versus the mostly non-organized CO velocity field in protostellar objects, and huge inequalities in mass, momentum and energy of the two classes, at least for the case of low-mass flows. Finally, all the molecular filaments in the explosive outflows point back to approximately a central position i.e. the place where its exciting source was located, contrary to the bulk of the molecular material within the protostellar outflows.
133 - S. Reissl , D. Seifried , S. Wolf 2017
Aims: In this paper we present a case study to investigate conditions necessary to detect a characteristic magnetic field substructure embedded in a large-scale field. A helical magnetic field with a surrounding hourglass shaped field is expected from theoretical predictions and self-consistent magnetohydrodynamical (MHD) simulations to be present in the specific case of protostellar outflows. Hence, such an outflow environment is the perfect for our study. Methodes: We present synthetic polarisation maps in the infrared and millimeter regime of protostellar outflows performed with the newly developed RT and polarisation code POLARIS. The code, as the first, includes a self-consistent description of various alignement mechanism like the imperfect Davis-Greenstein (IDG) and the radiative torque (RAT) alignment. We investigate for which effects the grain size distribution, and applied alignement mechanism have. Results: We find that the IDG mechanism cannot produce any measurable polarization degree (< 1 %) whereas RAT alignment produced polarization degrees of a few 1 %. Furthermore, we developed a method to identify the origin of the polarization. We show that the helical magnetic field in the outflow can only be observed close to the outflow axis and at its tip, whereas in the surrounding regions the hourglass field in the foreground dominates the polarization. Furthermore, the polarization degree in the outflow lobe is lower than in the surroundings in agreement with observations. We also find that the orientation of the polarization vector flips around a few 100 micron due to the transition from dichroic extinction to thermal re-emission. Hence, in order to avoid ambiguities when interpreting polarization data, we suggest to observed in the far-infrared and mm regime. Finally, we show that with ALMA it is possible to observe the polarization emerging from protostellar outflows.
The 100 square degree FCRAO CO survey of the Taurus molecular cloud provides an excellent opportunity to undertake an unbiased survey of a large, nearby, molecular cloud complex for molecular outflow activity. Our study provides information on the extent, energetics and frequency of outflows in this region, which are then used to assess the impact of outflows on the parent molecular cloud. The search identified 20 outflows in the Taurus region, 8 of which were previously unknown. Both $^{12}$CO and $^{13}$CO data cubes from the Taurus molecular map were used, and dynamical properties of the outflows are derived. Even for previously known outflows, our large-scale maps indicate that many of the outflows are much larger than previously suspected, with eight of the flows (40%) being more than a parsec long. The mass, momentum and kinetic energy from the 20 outflows are compared to the repository of turbulent energy in Taurus. Comparing the energy deposition rate from outflows to the dissipation rate of turbulence, we conclude that outflows by themselves cannot sustain the observed turbulence seen in the entire cloud. However, when the impact of outflows is studied in selected regions of Taurus, it is seen that locally, outflows can provide a significant source of turbulence and feedback. Five of the eight newly discovered outflows have no known associated stellar source, indicating that they may be embedded Class 0 sources. In Taurus, 30% of Class I sources and 12% of Flat spectrum sources from the Spitzer YSO catalogue have outflows, while 75% of known Class 0 objects have outflows. Overall, the paucity of outflows in Taurus compared to the embedded population of Class I and Flat Spectrum YSOs indicate that molecular outflows are a short-lived stage marking the youngest phase of protostellar life.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا