No Arabic abstract
This paper presents the process of plasma formation during laser induced breakdown spectroscopy (LIBS) along with analysis of emission from double pulse LIBS to better understand the processes and the factors involved in enhancement of plasma emission. In this analysis plasma emission has been considered directly proportional to the square of plasma density, its volume, and the fraction of absorption of second laser pulse in the plasma plume produced by the first laser through inverse Bremsstrahlung absorption process. The electron ion collision frequency, which is dependent on the density and temperature of the plasma, has been found playing important role in the enhancement of emission as well as in the saturation of emission during LIBS. The effect of material ablation, delay between lasers, plasma confinement and shielding effect has also been discussed.
Laser-induced breakdown spectroscopy (LIBS) show enhancement in its signal, when the laser-induced plasma is confined/decelerated under the effect of an external steady magnetic field or in a small cavity. An enhancement in LIBS signal has been observed ~2 times in the case of magnetic confinement. Combination of magnetic and spatial confinement provide enhancement by an order of magnitude. Theoretical analysis of the decelerated plasma has been found in agreement with the experimental observations. The enhancement in LIBS signal is found dependent on the efficiency of plasma confinement as well as on the time duration of laser. The saturation in LIBS signal at higher laser intensity is found correlated with electron-ion collision frequency as well as on the dynamics and instability of plasma plume. Possibility of further enhancement in emission has also been discussed.
The influence of ns-laser wavelength to discriminate ancient painting techniques such as are fresco, casein, animal glue, egg yolk and oil was investigated in this work. This study was carried out with a single shot laser on samples covered by a layer made of a mixture of the cinnabar pigment and different binders. Three wavelengths based on Nd: YAG laser were investigated (1064, 532 and 266 nm). The plasma is controlled at the same electron temperature after an adjustment of pulse energy for these three wavelengths on a fresco sample without organic binder. This approach allows to eliminate the effects of laser pulse energy and the material laser absorption. Afterwards, the emission spectra were compared to separate different techniques. The organic binding media has been separated based on the relative emission intensity of the present CN or C 2 rovibrational emissions. In order to test the capability of separating or identifying, the chemometric approach (PCA) was applied to the different matrix. The different solutions in term of wavelength range to optimise the identification was investigated. We focused on the evaluation for the laser wavelength to insure a better separation. The different capacity was interpreted by differentiating 1 Corresponding author. E-mail address:
[email protected] 2 the binders by the altered interaction mechanisms between the laser photon and the binders. Also, the electron temperature in the plasma was estimated, which provided the evidences to our findings.
Direct investigation of ion-induced dynamics in matter on picosecond (ps, 10-12 s) timescales has been precluded to date by the relatively long nanosecond (ns, 10-9 s) scale ion pulses typically provided by radiofrequency accelerators1. By contrast, laser-driven ion accelerators provide bursts of ps duration2, but have yet to be applied to the study of ultrafast ion-induced transients in matter. We report on the evolution of an electron-hole plasma excited in borosilicate glass by such bursts. This is observed as an onset of opacity to synchronised optical probe radiation and is characterised by the 3.0 +/- 0.8 ps ion pump rise-time . The observed decay-time of 35 +/- 3 ps i.e. is in excellent agreement with modelling and reveals the rapidly evolving electron temperature (>10 3 K) and carrier number density (>10 17cm-3). This result demonstrates that ps laser accelerated ion bursts are directly applicable to investigating the ultrafast response of matter to ion interactions and, in particular, to ultrafast pulsed ion radiolysis of water3-5, the radiolytic decompositions of which underpin biological cell damage and hadrontherapy for cancer treatment6.
Laser-induced breakdown spectroscopy (LIBS) is a laser based diagnostics used to study atomic emission from the expanding plasma plume formed during the laser-matter interaction. It provides valuable information about the composition of the target material. LIBS has proved its potential application in the analysis of impurities, pollutants and toxic elements in various types of matrices of different samples (solid, liquid and gases), even those present under difficult and harsh environmental conditions. This article reviews some recent developments in the field, and its wide application in various fields of research and analysis.
This paper reviews the state of art technology of laser induced breakdown spectroscopy (LIBS). Research on LIBS is gaining momentum in the field of instrumentation and data analysis technique due to its wide application in various field particularly in environmental monitoring and in industry. The main focus is on its miniaturization for field application and on increasing its sensitivity. The sensitivity of LIBS has been increased by confining the laser produced plasma using external magnetic field as well as using two successive laser pulse excitation of plasma. LIBS has capability for simultaneous multi element determination, localized microanalysis, surface analysis and has been used successfully for determination and identification of hazardous explosive and biological samples. Experimental findings of LIBS study in different applications have been discussed.