Do you want to publish a course? Click here

Modeling Near-Surface Bound Electron States in Three-Dimensional Topological Insulator: Analytical and Numerical Approaches

353   0   0.0 ( 0 )
 Added by Vladimir Men'shov N
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We apply both analytical and ab-initio methods to explore heterostructures composed of a threedimensional topological insulator (3D TI) and an ultrathin normal insulator (NI) overlayer as a proof ground for the principles of the topological phase engineering. Using the continual model of a semi-infinite 3D TI we study the surface potential (SP) effect caused by an attached ultrathin layer of 3D NI on the formation of topological bound states at the interface. The results reveal that spatial profile and spectrum of these near-surface states strongly depend on both the sign and strength of the SP. Using ab-initio band structure calculations to take materials specificity into account, we investigate the NI/TI heterostructures formed by a single tetradymite-type quintuple or septuple layer block and the 3D TI substrate. The analytical continuum theory results relate the near-surface state evolution with the SP variation and are in good qualitative agreement with those obtained from density-functional theory (DFT) calculations. We predict also the appearance of the quasi-topological bound state on the 3D NI surface caused by a local band gap inversion induced by an overlayer.



rate research

Read More

212 - Pengke Li , Ian Appelbaum 2016
Several recent experiments on three-dimensional topological insulators claim to observe a large charge current-induced non-equilibrium ensemble spin polarization of electrons in the helical surface state. We present a comprehensive criticism of such claims, using both theory and experiment: First, we clarify the interpretation of quantities extracted from these measurements by deriving standard expressions from a Boltzmann transport equation approach in the relaxation-time approximation at zero and finite temperature to emphasize our assertion that, despite high in-plane spin projection, obtainable current-induced ensemble spin polarization is minuscule. Second, we use a simple experiment to demonstrate that magnetic field-dependent open-circuit voltage hysteresis (identical to those attributed to current-induced spin polarization in topological insulator surface states) can be generated in analogous devices where current is driven through thin films of a topologically-trivial metal. This result *ipso facto* discredits the naive interpretation of previous experiments with TIs, which were used to claim observation of helicity, i.e. spin-momentum locking in the topologically-protected surface state.
When surface states (SSs) form in topological insulators (TIs), they inherit the properties of bulk bands, including the electron-hole (e-h) asymmetry but with much more profound impacts. Here, via combining magneto-infrared spectroscopy with theoretical analysis, we show that e-h asymmetry significantly modifies the SS electronic structures when interplaying with the quantum confinement effect. Compared to the case without e-h asymmetry, the SSs now bear not only a band asymmetry as that in the bulk but also a shift of the Dirac point relative to the bulk bands and a reduction of the hybridization gap up to 70%. Our results signify the importance of e-h asymmetry in band engineering of TIs in the thin film limit.
The fermionic self-energy on the surface of a topological insulator proximity coupled to ferro- and antiferromagnetic insulators is studied. An enhanced electron-magnon coupling is achieved by allowing the electrons on the surface of the topological insulator to have a different exchange coupling to the two sublattices of the antiferromagnet. Such a system is therefore seen as superior to a ferromagnetic interface for the realization of magnon-mediated superconductivity. The increased electron-magnon-coupling simultaneously increases the self-energy effects. A careful study of this has been lacking, and in this paper we show how the inverse quasiparticle lifetime and energy renormalization on the surface of the topological insulator can be kept low close to the Fermi level by using a magnetic insulator with a sufficient easy-axis anisotropy. We find that the antiferromagnetic case is most interesting both from a theoretical and an experimental standpoint due to the increased electron-magnon coupling, combined with a reduced need for easy-axis anisotropy compared to the ferromagnetic case. We also consider a set of material and instrumental parameters where these self-energies should be measurable in angle-resolved photoemission spectroscopy (ARPES) experiments, paving the way for a measurement of the interfacial exchange coupling strength.
We have utilized time-domain magneto-terahertz spectroscopy to investigate the low frequency optical response of topological insulator Cu$_{0.02}$Bi$_2$Se$_3$ and Bi$_2$Se$_3$ films. With both field and frequency dependence, such experiments give sufficient information to measure the mobility and carrier density of multiple conduction channels simultaneously. We observe sharp cyclotron resonances (CRs) in both materials. The small amount of Cu incorporated into the Cu$_{0.02}$Bi$_2$Se$_3$ induces a true bulk insulator with only a textit{single} type of conduction with total sheet carrier density $sim4.9times10^{12}/$cm$^{2}$ and mobility as high as 4000 cm$^{2}/$V$cdot$s. This is consistent with conduction from two virtually identical topological surface states (TSSs) on top and bottom of the film with a chemical potential $sim$145 meV above the Dirac point and in the bulk gap. The CR broadens at high fields, an effect that we attribute to an electron-phonon interaction. This assignment is supported by an extended Drude model analysis of the zero field Drude conductance. In contrast, in normal Bi$_2$Se$_3$ films two conduction channels were observed and we developed a self-consistent analysis method to distinguish the dominant TSSs and coexisting trivial bulk/2DEG states. Our high-resolution Faraday rotation spectroscopy on Cu$_{0.02}$Bi$_2$Se$_3$ paves the way for the observation of quantized Faraday rotation under experimentally achievable conditions to push chemical potential in the lowest Landau Level.
The protected surface conductivity of topological insulators, carried by ultra-relativistic Dirac fermions, is in high demand for the next generation of electronic devices. Progress in the unambiguous identification of this surface contribution and, in a second step, its control are needed to move forward. Here we demonstrate both, with a combined transport and spectroscopy study of high-quality single crystals and mesoscopic devices of the topological insulator TlBiSe2. We show how various external stimuli-from thermal radiation, via low-intensity light, to high-intensity laser pumping and current driving-can boost the surface contribution, thereby making it both unambiguously detectable and potentially exploitable for applications. Once switched on, the extra surface contribution is persistent, with lifetimes of hundreds of years at low temperatures. We understand this effect in terms of the well-known concept of surface charge accumulation via a Schottky barrier formation, and propose that the same mechanism underlies also the slow relaxations seen with spectroscopic probes in our and other materials, which might thus also be persistent. We expect our technique to be readily transferable to other materials and probes, thereby shedding light on unexplained slow relaxations in transport and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا