Do you want to publish a course? Click here

Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo

126   0   0.0 ( 0 )
 Added by Ren\\'e Reimann
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCubes large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution $<sigma v>$ down to $1.9cdot 10^{-23},mathrm{cm}^3mathrm{s}^{-1}$ for a dark matter particle mass of $700,mathrm{GeV}$ to $1000,mathrm{GeV}$ and direct annihilation into $ ubar{ u}$. The resulting exclusion limits come close to exclusion limits from $gamma$-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.



rate research

Read More

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of <sigma_{A}v> simeq 10^{-22} cm^3/s for WIMP masses above 1 TeV, assuming a monochromatic neutrino line spectrum.
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, $left<sigma_mathrm{A} vright>$, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to $simeq 4 cdot 10^{-24}$ cm$^3$ s$^{-1}$, and $simeq 2.6 cdot 10^{-23}$ cm$^3$ s$^{-1}$ for the $ uoverline{ u}$ channel, respectively.
We present results from an analysis looking for dark matter annihilation in the Sun with the IceCube neutrino telescope. Gravitationally trapped dark matter in the Suns core can annihilate into Standard Model particles making the Sun a source of GeV neutrinos. IceCube is able to detect neutrinos with energies >100 GeV while its low-energy infill array DeepCore extends this to >10 GeV. This analysis uses data gathered in the austral winters between May 2011 and May 2014, corresponding to 532 days of livetime when the Sun, being below the horizon, is a source of up-going neutrino events, easiest to discriminate against the dominant background of atmospheric muons. The sensitivity is a factor of two to four better than previous searches due to additional statistics and improved analysis methods involving better background rejection and reconstructions. The resultant upper limits on the spin-dependent dark matter-proton scattering cross section reach down to $1.46times10^{-5}$ pb for a dark matter particle of mass 500 GeV annihilating exclusively into $tau^{+}tau^{-}$ particles. These are currently the most stringent limits on the spin-dependent dark matter-proton scattering cross section for WIMP masses above 50 GeV.
We compute the sensitivity to dark matter annihilations for the forthcoming large Cherenkov Telescope Array (CTA) in several primary channels and over a range of dark matter masses from 30 GeV up to 80 TeV. For all channels, we include inverse Compton scattering of e$^pm$ by dark matter annihilations on the ambient photon background, which yields substantial contributions to the overall gamma-ray flux. We improve the analysis over previous work by: i) implementing a spectral and morphological analysis of the gamma-ray emission; ii) taking into account the most up-to-date cosmic ray background obtained from a full CTA Monte Carlo simulation and a description of the diffuse astrophysical emission; and iii) including the systematic uncertainties in the rich observational CTA datasets. We find that our spectral and morphological analysis improves the CTA sensitivity by roughly a factor 2. For the hadronic channels, CTA will be able to probe thermal dark matter candidates over a broad range of masses if the systematic uncertainties in the datasets will be controlled better than the percent level. For the leptonic modes, the CTA sensitivity will be well below the thermal value of the annihilation cross-section. In this case, even with larger systematics, thermal dark matter candidates up to masses of a few TeV will be easily studied.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا