Do you want to publish a course? Click here

Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory

252   0   0.0 ( 0 )
 Added by Carsten Rott
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of <sigma_{A}v> simeq 10^{-22} cm^3/s for WIMP masses above 1 TeV, assuming a monochromatic neutrino line spectrum.



rate research

Read More

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from the Galactic Plane region (-80 deg < l < -30 deg; -10 deg < b < 5 deg) in the energy range 1.2 - 6.0 PeV. In the same energy range, point source fluxes with E^(-2) spectra have been excluded at a level of (E/TeV)^2 dPhi/dE ~ 10^(-12)-10^(-11) cm^2/s/TeV depending on source declination. The complete IceCube detector will have a better sensitivity, due to the larger detector size, improved reconstruction and vetoing techniques. Preliminary data from the nearly-final IceCube detector configuration has been used to estimate the 5 year sensitivity of the full detector. It is found to be more than an order of magnitude better, allowing the search for PeV extensions of known TeV gamma-ray emitters.
Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCubes large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution $<sigma v>$ down to $1.9cdot 10^{-23},mathrm{cm}^3mathrm{s}^{-1}$ for a dark matter particle mass of $700,mathrm{GeV}$ to $1000,mathrm{GeV}$ and direct annihilation into $ ubar{ u}$. The resulting exclusion limits come close to exclusion limits from $gamma$-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, $left<sigma_mathrm{A} vright>$, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to $simeq 4 cdot 10^{-24}$ cm$^3$ s$^{-1}$, and $simeq 2.6 cdot 10^{-23}$ cm$^3$ s$^{-1}$ for the $ uoverline{ u}$ channel, respectively.
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field-of-view observatory sensitive to 500 GeV - 100 TeV gamma rays and cosmic rays. With its observations over 2/3 of the sky every day, the HAWC observatory is sensitive to a wide variety of astrophysical sources, including possible gamma rays from dark matter. Dark matter annihilation and decay in the Milky Way Galaxy should produce gamma-ray signals across many degrees on the sky. The HAWC instantaneous field-of-view of 2 sr enables observations of extended regions on the sky, such as those from dark matter in the Galactic halo. Here we show limits on the dark matter annihilation cross-section and decay lifetime from HAWC observations of the Galactic halo with 15 months of data. These are some of the most robust limits on TeV and PeV dark matter, largely insensitive to the dark matter morphology. These limits begin to constrain models in which PeV IceCube neutrinos are explained by dark matter which primarily decays into hadrons.
A search for muon neutrinos from dark matter annihilations in the Galactic Center region has been performed with the 40-string configuration of the IceCube Neutrino Observatory using data collected in 367 days of live-time starting in April 2008. The observed fluxes were consistent with the atmospheric background expectations. Upper limits on the self-annihilation cross-section are obtained for dark matter particle masses ranging from 100 GeV to 10 TeV. In the case of decaying dark matter, lower limits on the lifetime have been determined for masses between 200 GeV and 20 TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا