Do you want to publish a course? Click here

Prospects for Annihilating Dark Matter in the inner Galactic halo by the Cherenkov Telescope Array

267   0   0.0 ( 0 )
 Added by Moulin Emmanuel
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the sensitivity to dark matter annihilations for the forthcoming large Cherenkov Telescope Array (CTA) in several primary channels and over a range of dark matter masses from 30 GeV up to 80 TeV. For all channels, we include inverse Compton scattering of e$^pm$ by dark matter annihilations on the ambient photon background, which yields substantial contributions to the overall gamma-ray flux. We improve the analysis over previous work by: i) implementing a spectral and morphological analysis of the gamma-ray emission; ii) taking into account the most up-to-date cosmic ray background obtained from a full CTA Monte Carlo simulation and a description of the diffuse astrophysical emission; and iii) including the systematic uncertainties in the rich observational CTA datasets. We find that our spectral and morphological analysis improves the CTA sensitivity by roughly a factor 2. For the hadronic channels, CTA will be able to probe thermal dark matter candidates over a broad range of masses if the systematic uncertainties in the datasets will be controlled better than the percent level. For the leptonic modes, the CTA sensitivity will be well below the thermal value of the annihilation cross-section. In this case, even with larger systematics, thermal dark matter candidates up to masses of a few TeV will be easily studied.



rate research

Read More

We derive the Cherenkov Telescope Array (CTA) sensitivity to dark matter (DM) annihilation in several primary channels, over a broad range of DM masses. These sensitivities are estimated when CTA is pointed towards a large sample of Milky Ways dwarf spheroidal galaxies (dSphs) with promising $J$-factors and small statistical uncertainties. This analysis neglects systematic uncertainties, which we estimate at the level of at least 1 dex. We also present sensitivities on the annihilation cross section from a combined analysis of 4 dSphs. We assess the CTA sensitivity by: $i)$ using, for each dSph, a recent determination of the $J$-factor and its statistical error; $ii)$ considering the most up-to-date cosmic ray background; and $iii)$ including both spatial and spectral terms in the likelihood analysis. We find that a joint spectral and spatial analysis improves the CTA sensitivity, in particular for primary channels with sharp features in the $gamma$-ray energy spectrum and for dSphs with steep $J$-factor profiles, as deduced from the internal kinematics. The greatest sensitivities are obtained for observations of Ursa Minor among the classical dSphs and of Ursa Major II for ultra-faint dSphs.
281 - T. Hassan , S. Bonnefoy , M. Lopez 2012
In the last few years, the Fermi-LAT telescope has discovered over a 100 pulsars at energies above 100 MeV, increasing the number of known gamma-ray pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes, such as MAGIC and VERITAS, have detected for the first time VHE pulsed gamma-rays from the Crab pulsar. Such detections have revealed that the Crab VHE spectrum follows a power-law up to at least 400 GeV, challenging most theoretical models, and opening wide possibilities of detecting more pulsars from the ground with the future Cherenkov Telescope Array (CTA). In this contribution, we study the capabilities of CTA for detecting Fermi pulsars. For this, we extrapolate their spectra with Crab-like power-law tails in the VHE range, as suggested by the latest MAGIC and VERITAS results.
Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV--GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E$>$100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.
The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.
Observations of dwarf galaxies and of the Milky Way halo with current ground-based Cherenkov telescopes have resulted in interesting limits on the cross-section for dark matter (DM) self- annihilation for WIMP masses above some 100 GeV. The future Cherenkov Telescope Array (CTA) is expected to further explore the parameter space of dark matter candidates that are predicted in extensions of the standard model of particle physics. Due to its low energy threshold (of order of few tens of GeV) and high sensitivity, CTA will also probe lower WIMP masses than current experiments, but the actual performance in this regime will be influenced by the altitude of the observatory above sea level. Using the response of possible CTA candidate arrays to simulated photons and hadrons, we estimate how searches for a WIMP annihilation signal from the Milky Way halo will be influenced by altitude of different possible CTA sites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا