No Arabic abstract
Due to neutron irradiation, solid breeder blankets are subjected to complex thermo-mechanical conditions. Within one breeder unit, the ceramic breeder bed is composed of spherical-shaped lithium orthosilicate pebbles, and as a type of granular material, it exhibits strong coupling between temperature and stress fields. In this paper, we study these thermo-mechanical problems by developing a thermal discrete element method (Thermal-DEM). This proposed simulation tool models each individual ceramic pebble as one element and considers grain-scale thermo-mechanical interactions between elements. A small section of solid breeder pebble bed in HCPB is modelled using thousands of individual pebbles and subjected to volumetric heating profiles calculated from neutronics under ITER-relevant conditions. We consider heat transfer at the grain-scale between pebbles through both solid-to-solid contacts and the interstitial gas phase, and we calculate stresses arising from thermal expansion of pebbles. The overall effective conductivity of the bed depends on the resulting compressive stress state during the neutronic heating. The thermal-DEM method proposed in this study provides the access to the grain-scale information, which is beneficial for HCPB design and breeder material optimization, and a better understanding of overall thermo-mechanical responses of the breeder units under fusion-relevant conditions.
The influence of fast neutron irradiation on the structure and spatial distribution of Ge nanocrystals (NC) embedded in an amorphous SiO2 matrix has been studied. The investigation was conducted by means of laser Raman Scattering (RS), High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The irradiation of NC-Ge samples by a high dose of fast neutrons lead to a partial destruction of the nanocrystals. Full reconstruction of crystallinity was achieved after annealing the radiation damage at 800 deg. C, which resulted in full restoration of the RS spectrum. HR-TEM images show, however, that the spatial distributions of NC-Ge changed as a result of irradiation and annealing. A sharp decrease in NC distribution towards the SiO2 surface has been observed. This was accompanied by XPS detection of Ge oxides and elemental Ge within both the surface and subsurface region.
We present a statistical model which is able to capture some interesting features exhibited in the Brazilian test. The model is based on breakable elements which break when the force experienced by the elements exceed their own load capacity. In this model when an element breaks, the capacity of the neighboring elements are decreased by a certain amount assuming weakening effect around the defected zone. We numerically investigate the stress-strain behavior, the strength of the system, how it scales with the system size and also its fluctuation for both uniformly and weibull distributed breaking threshold of the elements in the system. We find that the strength of the system approaches its asymptotic value $sigma_c=1/6$ and $sigma_c=5/18$ for uniformly and Weibull distributed breaking threshold of the elements respectively. We have also shown the damage profile right at the point when the stress-strain curve reaches at its maximum and then it is compared with our experimental observations.
A discrete-element method (DEM) assembly of virtual particles is calibrated to approximate the behavior of a natural sand in undrained loading. The particles are octahedral, bumpy clusters of spheres that are compacted into assemblies of different densities. The contact model is a Jager generalization of the Hertz contact, which yields a small-strain shear modulus that is proportional to the square root of confining stress. Simulations made of triaxial extension and compression loading conditions and of simple shear produce behaviors that are similar to sand. Undrained cyclic shearing simulations are performed with nonuniform amplitudes of shearing pulses and with 24 irregular seismic shearing sequences. A methodology is proposed for quantifying the severities of such irregular shearing records, allowing the 24 sequences to be ranked in severity. The relative severities of the 24 seismic sequences show an anomalous dependence on sampling density. Four scalar measures are proposed for predicting the severity of a particular loading sequence. A stress-based scalar measure shows superior efficiency in predicting initial liquefaction and pore pressure rise.
A flexible fiber model based on the discrete element method (DEM) is presented and validated for the simulation of uniaxial compression of flexible fibers in a cylindrical container. It is found that the contact force models in the DEM simulations have a significant impact on compressive forces exerted on the fiber bed. Only when the geometry-dependent normal contact force model and the static friction model are employed, the simulation results are in good agreement with experimental results. Systematic simulation studies show that the compressive force initially increases and eventually saturates with an increase in the fiber-fiber friction coefficient, and the fiber-fiber contact forces follow a similar trend. The compressive force and lateral shear-to-normal stress ratio increase linearly with increasing fiber-wall friction coefficient. In uniaxial compression of frictional fibers, more static friction contacts occur than dynamic friction contacts with static friction becoming more predominant as the fiber-fiber friction coefficient increases.
A two-dimensional granular packing under horizontally circular shaking exhibits various collective motion modes depending on the strength of the oscillation and the global packing density. For intermediate packing density and oscillation amplitude, a high density phase travels along the containers side wall in clockwise direction, while the oscillation itself is anti-clockwise. Further increasing packing density towards the hexagonal packing, the whole packing rotates collectively in clockwise direction. The core of the packing rotates as a solid and is separated from the boundary by a fluid-like layer. Both motion modes are associated with the asymmetric motion of particles close to the side wall.