Do you want to publish a course? Click here

Discrete Element Method Model of Elastic Fiber Uniaxial Compression

88   0   0.0 ( 0 )
 Added by Yu Guo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A flexible fiber model based on the discrete element method (DEM) is presented and validated for the simulation of uniaxial compression of flexible fibers in a cylindrical container. It is found that the contact force models in the DEM simulations have a significant impact on compressive forces exerted on the fiber bed. Only when the geometry-dependent normal contact force model and the static friction model are employed, the simulation results are in good agreement with experimental results. Systematic simulation studies show that the compressive force initially increases and eventually saturates with an increase in the fiber-fiber friction coefficient, and the fiber-fiber contact forces follow a similar trend. The compressive force and lateral shear-to-normal stress ratio increase linearly with increasing fiber-wall friction coefficient. In uniaxial compression of frictional fibers, more static friction contacts occur than dynamic friction contacts with static friction becoming more predominant as the fiber-fiber friction coefficient increases.



rate research

Read More

We present a statistical model which is able to capture some interesting features exhibited in the Brazilian test. The model is based on breakable elements which break when the force experienced by the elements exceed their own load capacity. In this model when an element breaks, the capacity of the neighboring elements are decreased by a certain amount assuming weakening effect around the defected zone. We numerically investigate the stress-strain behavior, the strength of the system, how it scales with the system size and also its fluctuation for both uniformly and weibull distributed breaking threshold of the elements in the system. We find that the strength of the system approaches its asymptotic value $sigma_c=1/6$ and $sigma_c=5/18$ for uniformly and Weibull distributed breaking threshold of the elements respectively. We have also shown the damage profile right at the point when the stress-strain curve reaches at its maximum and then it is compared with our experimental observations.
We introduce a contact law for the normal force generated between two contacting, elastically anisotropic bodies of arbitrary geometry. The only requirement is that their surfaces be smooth and frictionless. This anisotropic contact law is obtained from a simplification of the exact solution to the continuum elasticity problem and takes the familiar form of Hertz contact law, with the only difference being the orientation-dependence of the material-specific contact modulus. The contact law is remarkably accurate when compared with the exact solution, for a wide range of materials and surface geometries. We describe a computationally efficient implementation of the contact law into a discrete element method code, taking advantage of the precomputation of the contact modulus over all possible orientations. Finally, we showcase two application examples based on real materials where elastic anisotropy of the particles induces noticeable effects on macroscopic behavior. Notably, the second example demonstrates the ability to engineer tunable vibrational band gaps in a one-dimensional granular crystal by mere rotation of the constituent spherical particles.
A discrete-element method (DEM) assembly of virtual particles is calibrated to approximate the behavior of a natural sand in undrained loading. The particles are octahedral, bumpy clusters of spheres that are compacted into assemblies of different densities. The contact model is a Jager generalization of the Hertz contact, which yields a small-strain shear modulus that is proportional to the square root of confining stress. Simulations made of triaxial extension and compression loading conditions and of simple shear produce behaviors that are similar to sand. Undrained cyclic shearing simulations are performed with nonuniform amplitudes of shearing pulses and with 24 irregular seismic shearing sequences. A methodology is proposed for quantifying the severities of such irregular shearing records, allowing the 24 sequences to be ranked in severity. The relative severities of the 24 seismic sequences show an anomalous dependence on sampling density. Four scalar measures are proposed for predicting the severity of a particular loading sequence. A stress-based scalar measure shows superior efficiency in predicting initial liquefaction and pore pressure rise.
112 - Romain Lagrange 2021
We study the buckling of a one fiber composite whose matrix stiffness is slightly dependent on the compressive force. We show that the equilibrium curves of the system exhibit a limit load when the induced stiffness parameter gets bigger than a threshold. This limit load increases when increasing the stiffness parameter and is related to a possible localized path in the post-buckling domain. Such a change in the maximum load may be very desirable from a structural stand point.
Polyelectrolyte gels are a very attractive class of actuation materials with remarkable electronic and mechanical properties with a great similarity to biological contractile tissues. They consist of a polymer network with ionizable groups and a liquid phase with mobile ions. Absorption and delivery of solvent lead to a large change of volume. This mechanism can be triggered by chemical (change of salt concentration or pH of solution surrounding the gel), electrical, thermal or optical stimuli. Due to this capability, these gels can be used as actuators for technical applications, where large swelling and shrinkage is desired. In the present work chemically stimulated polymer gels in a solution bath are investigated. To adequately describe the different complicated phenomena occurring in these gels, they can be modeled on different scales. Therefore, models based on the statistical theory and porous media theory, as well as a coupled multi-field model and a discrete element formulation are derived and employed. In this paper, the coupled multi-field model and the discrete element model for chemical stimulation of a polymer gel film with and without domain deformation are employed. Based on these results, the presented formulations are compared and conclusions on their applicability in engineering practice are finally drawn.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا