Do you want to publish a course? Click here

Existence and large time behaviour of finite points blow-up solutions of the fast diffusion equation

87   0   0.0 ( 0 )
 Added by Sunghoon Kim
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $OmegasubsetR^n$ be a smooth bounded domain and let $a_1,a_2,dots,a_{i_0}inOmega$, $widehat{Omega}=Omegasetminus{a_1,a_2,dots,a_{i_0}}$ and $widehat{R^n}=R^nsetminus{a_1,a_2,dots,a_{i_0}}$. We prove the existence of solution $u$ of the fast diffusion equation $u_t=Delta u^m$, $u>0$, in $widehat{Omega}times (0,infty)$ ($widehat{R^n}times (0,infty)$ respectively) which satisfies $u(x,t)toinfty$ as $xto a_i$ for any $t>0$ and $i=1,cdots,i_0$, when $0<m<frac{n-2}{n}$, $ngeq 3$, and the initial value satisfies $0le u_0in L^p_{loc}(2{Omega}setminus{a_1,cdots,a_{i_0}})$ ($u_0in L^p_{loc}(widehat{R^n})$ respectively) for some constant $p>frac{n(1-m)}{2}$ and $u_0(x)ge lambda_i|x-a_i|^{-gamma_i}$ for $xapprox a_i$ and some constants $gamma_i>frac{2}{1-m},lambda_i>0$, for all $i=1,2,dots,i_0$. We also find the blow-up rate of such solutions near the blow-up points $a_1,a_2,dots,a_{i_0}$, and obtain the asymptotic large time behaviour of such singular solutions. More precisely we prove that if $u_0gemu_0$ on $widehat{Omega}$ ($widehat{R^n}$, respectively) for some constant $mu_0>0$ and $gamma_1>frac{n-2}{m}$, then the singular solution $u$ converges locally uniformly on every compact subset of $widehat{Omega}$ (or $widehat{R^n}$ respectively) to infinity as $ttoinfty$. If $u_0gemu_0$ on $widehat{Omega}$ ($widehat{R^n}$, respectively) for some constant $mu_0>0$ and satisfies $lambda_i|x-a_i|^{-gamma_i}le u_0(x)le lambda_i|x-a_i|^{-gamma_i}$ for $xapprox a_i$ and some constants $frac{2}{1-m}<gamma_ilegamma_i<frac{n-2}{m}$, $lambda_i>0$, $lambda_i>0$, $i=1,2,dots,i_0$, we prove that $u$ converges in $C^2(K)$ for any compact subset $K$ of $2{Omega}setminus{a_1,a_2,dots,a_{i_0}}$ (or $widehat{R^n}$ respectively) to a harmonic function as $ttoinfty$.



rate research

Read More

88 - Kin Ming Hui 2018
Let $nge 3$ and $0<m<frac{n-2}{n}$. We will extend the results of J.L. Vazquez and M. Winkler and prove the uniqueness of finite points blow-up solutions of the fast diffusion equation $u_t=Delta u^m$ in both bounded domains and $mathbb{R}^ntimes (0,infty)$. We will also construct initial data such that the corresponding solution of the fast diffusion equation in bounded domain oscillate between infinity and some positive constant as $ttoinfty$.
144 - Kin Ming Hui 2014
Let $nge 3$, $0<m<frac{n-2}{n}$, $rho_1>0$, $betagefrac{mrho_1}{n-2-nm}$ and $alpha=frac{2beta+rho_1}{1-m}$. For any $lambda>0$, we will prove the existence and uniqueness (for $betagefrac{rho_1}{n-2-nm}$) of radially symmetric singular solution $g_{lambda}in C^{infty}(R^nsetminus{0})$ of the elliptic equation $Delta v^m+alpha v+beta xcdot abla v=0$, $v>0$, in $R^nsetminus{0}$, satisfying $displaystylelim_{|x|to 0}|x|^{alpha/beta}g_{lambda}(x)=lambda^{-frac{rho_1}{(1-m)beta}}$. When $beta$ is sufficiently large, we prove the higher order asymptotic behaviour of radially symmetric solutions of the above elliptic equation as $|x|toinfty$. We also obtain an inversion formula for the radially symmetric solution of the above equation. As a consequence we will prove the extinction behaviour of the solution $u$ of the fast diffusion equation $u_t=Delta u^m$ in $R^ntimes (0,T)$ near the extinction time $T>0$.
145 - Kin Ming Hui , Sunghoon Kim 2014
Let $Omega$ be a smooth bounded domain in $R^n$, $nge 3$, $0<mlefrac{n-2}{n}$, $a_1,a_2,..., a_{i_0}inOmega$, $delta_0=min_{1le ile i_0}{dist }(a_i,1Omega)$ and let $Omega_{delta}=Omegasetminuscup_{i=1}^{i_0}B_{delta}(a_i)$ and $hat{Omega}=Omegasetminus{a_1,...,a_{i_0}}$. For any $0<delta<delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=Delta u^m$ in $Omega_{delta}times (0,T)$ for some $T>0$. We will prove the existence of singular solutions of this equation in $hat{Omega}times (0,T)$ for some $T>0$ that blow-up at the points $a_1,..., a_{i_0}$.
181 - Kin Ming Hui , Soojung Kim 2015
We study the asymptotic large time behavior of singular solutions of the fast diffusion equation $u_t=Delta u^m$ in $({mathbb R}^nsetminus{0})times(0,infty)$ in the subcritical case $0<m<frac{n-2}{n}$, $nge3$. Firstly, we prove the existence of singular solution $u$ of the above equation that is trapped in between self-similar solutions of the form of $t^{-alpha} f_i(t^{-beta}x)$, $i=1,2$, with initial value $u_0$ satisfying $A_1|x|^{-gamma}le u_0le A_2|x|^{-gamma}$ for some constants $A_2>A_1>0$ and $frac{2}{1-m}<gamma<frac{n-2}{m}$, where $beta:=frac{1}{2-gamma(1-m)}$, $alpha:=frac{2beta-1}{1-m},$ and the self-similar profile $f_i$ satisfies the elliptic equation $$ Delta f^m+alpha f+beta xcdot abla f=0quad mbox{in ${mathbb R}^nsetminus{0}$} $$ with $lim_{|x|to0}|x|^{frac{ alpha}{ beta}}f_i(x)=A_i$ and $lim_{|x|toinfty}|x|^{frac{n-2}{m}}{f_i}(x)= D_{A_i} $ for some constants $D_{A_i}>0$. When $frac{2}{1-m}<gamma<n$, under an integrability condition on the initial value $u_0$ of the singular solution $u$, we prove that the rescaled function $$ tilde u(y,tau):= t^{,alpha} u(t^{,beta} y,t),quad{ tau:=log t}, $$ converges to some self-similar profile $f$ as $tautoinfty$.
We are concerned with nonnegative solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term $u^p$ with $p>1$. The density decays {it fast} at infinity, in the sense that $rho(x)sim |x|^{-q}$ as $|x|to +infty$ with $qge 2.$ In the case when $q=2$, if $p$ is bigger than $m$, we show that, for large enough initial data, solutions blow-up in finite time and for small initial datum, solutions globally exist. On the other hand, in the case when $q>2$, we show that existence of global in time solutions always prevails. The case of {it slowly} decaying density at infinity, i.e. $qin [0,2)$, is examined in [41].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا