Do you want to publish a course? Click here

Exciton Footprint of Self-assembled AlGaAs Quantum Dots in Core-Shell Nanowires

256   0   0.0 ( 0 )
 Added by Yannik Fontana
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum-dot-in-nanowire systems constitute building blocks for advanced photonics and sensing applications. The electronic symmetry of the emitters impacts their function capabilities. Here, we study the fine structure of gallium-rich quantum dots nested in the shell of GaAs-AlGaAs core-shell nanowires. We used optical spectroscopy to resolve the splitting resulting from the exchange terms and extract the main parameters of the emitters. Our results indicate that the quantum dots can host neutral as well as charges excitonic complexes and that the excitons exhibit a slightly elongated footprint, with the main axis tilted with respect to the growth axis. GaAs-AlGaAs emitters in a nanowire are particularly promising for overcoming the limitations set by strain in other systems, with the benefit of being integrated in a versatile photonic structure.



rate research

Read More

We study the dynamics of excitons in GaAs/(Al,Ga)As core-shell nanowires by continuous-wave and time-resolved photoluminescence and photoluminescence excitation spectroscopy. Strong Al segregation in the shell of the nanowires leads to the formation of Ga-rich inclusions acting as quantum dots. At 10 K, intense light emission associated with these shell quantum dots is observed. The average radiative lifetime of excitons confined in the shell quantum dots is 1.7 ns. We show that excitons may tunnel toward adjacent shell quantum dots and nonradiative point defects. We investigate the changes in the dynamics of charge carriers in the shell with increasing temperature, with particular emphasis on the transfer of carriers from the shell to the core of the nanowires. We finally discuss the implications of carrier localization in the (Al,Ga)As shell for fundamental studies and optoelectronic applications based on core-shell III-As nanowires.
We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.
We report on single InGaAs quantum dots embedded in a lateral electric field device. By applying a voltage we tune the neutral exciton transition into resonance with the biexciton using the quantum confined Stark effect. The results are compared to theoretical calculations of the relative energies of exciton and biexciton. Cascaded decay from the manifold of single exciton-biexciton states has been predicted to be a new concept to generate entangled photon pairs on demand without the need to suppress the fine structures splitting of the neutral exciton.
139 - C. Chen , S. Shehata , C. Fradin 2007
Al(0.37)Ga(0.63)As nanowires (NWs) were grown in a molecular beam epitaxy system on GaAs(111)B substrates. Micro-photoluminescence measurements and energy dispersive X-ray spectroscopy indicated a core-shell structure and Al composition gradient along the NW axis, producing a potential minimum for carrier confinement. The core-shell structure formed during the growth as a consequence of the different Al and Ga adatom diffusion lengths.
Polaron dephasing processes are investigated in InAs/GaAs dots using far-infrared transient four wave mixing (FWM) spectroscopy. We observe an oscillatory behaviour in the FWM signal shortly (< 5 ps) after resonant excitation of the lowest energy conduction band transition due to coherent acoustic phonon generation. The subsequent single exponential decay yields long intraband dephasing times of 90 ps. We find excellent agreement between our measured and calculated FWM dynamics, and show that both real and virtual acoustic phonon processes are necessary to explain the temperature dependence of the polarization decay.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا